»;

BlLack

Instruction Set Reference

Preliminary Edition, November 2001

Part Number
82-000410-14

Analog Devices, Inc.

DSP and Systems Products Group
Three Technology Way

Norwood, Mass. 02062-9106

ANALOG
DEVICES

Blﬂl.’l(/r@&

Copyright Information

© 2001 Analog Devices, Inc. and Intel Corporation.

ALL RIGHTS RESERVED. This document may not be reproduced in any form without prior, express
written consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer

Analog Devices, Inc. reserves the right to change this product without prior notice. Information furnished
by Analog Devicesis believed to be accurate and reliable. However, no responsibility is assumed by Ana-
log Devices for its use; nor for any infringement of patents or other rights of third parties which may
result from its use. No license is granted by implication or otherwise under the patent rights of Analog
Devices, Inc.

Trademark and Service Mark Notice

The Analog Deviceslogo is aregistered trademark; and Blackfin and the Blackfin logo are trademarks of
Analog Devices, Inc.

All other brand and product names are trademarks or service marks of their respective owners.

Development Information

Blackfin DSPs are based on the Micro Signal Architecture, jointly developed by Analog Devices, Inc. and
Intel Corporation.

i Blackfin DSP Instruction Set Reference

Bma/(/?@&

Contents

1 1] (o (1Tt o] o PO PO PP PPRRROPRRRR 1-1
1.1 Manual OFganiZAtiON.uee ittt ettt e e e e e e e e e e bbb e e e e e aaeeeaeaannenes 1-2
1.2 SYNEAX CONVENTIONS ...ttt ettt e e e e e e e e ettt e e e e e e e e e e e e anntbbeaeeeeaaeaaeaaannns 1-2
1.3 NOtatioN CONVENLIONSoiiiiiiiiiiiieee e e e e e e e e e e e e e e e e et e s 1-3
1.4 Behavior CONVENTIONS...........viiiiiiiii et e e e as 1-4
15 (€1 (01T ST= 1 APPSR PPPPSPPRPRT 1-4
1.6 Related REFEIEINCESooiiieeeeeee ettt e s 1-8
1.7 Document Errata SIGhtiNGgS.......ccieeeii i e e s s r e e e e e e e e e 1-9

2 Program FIOW CONIOLccoiiiiiiiee ettt e e e e e e e e e e e e e s e e e s ba e e aaeeaeeeeaeannns 2-1
21 BT 10] TP 2-2
2.2 CoNAITIONAI JUMP .ttt e et e e e e e e e e e e bt eeeeaaeaaeaaannns 2-4
2.3 (O3 1| SRR OPUPRRPSPRRR 2-6
2.4 L= L8] o PSSP 2-8
25 Zero-Overhead LOOP SELUP ...ttt e e e e e e ee e 2-11

3 [0 To IS (o] (TSSOSO 3-1
3.1 o= To B 11010 g T=To [T (SRR 3-2
3.2 0T Vol o1 a] =T g 2 LT] (= PSR 3-4
3.3 0T To [oY - W =T o 1S =] PRSP 3-6
3.4 Load Half-Word — Zero-EXteNAEd............uvieiiiiiie et 3-9
35 Load Half-Word — Sign-EXteNdedccuuviiieeiiiiiiiiiiiiie e ee e e e e 3-12
3.6 Load High Data Register Half ..o 3-15
3.7 Load Low Data Register Half...........cccuiiiiiiiee e 3-18
3.8 Load Byte — ZerO-EXtENAEM.........cceeiiiiiiiiiiie ettt e e e e e e e e e e e 3-21
3.9 Load Byte — SIgN-EXIENAEAccvvieeieeiiciiieeie e e e e e e e e e 3-23
3.10 StOre POINIEN REQISTEL ...ttt e e e e e e e s e aereaaeeeeanas 3-25
3.11 StOre Data REQISTEN ..ot e e e e e e e e s rrarraeeeeeaann 3-27
3.12 Store High Data Register Half ..o 3-30
3.13 Store Low Data Register Halfc.oooiiiiiiiiiicc e 3-33
3.14 I (0 (=30 =Y (S 3-36

4 VIOVttt ettt e e et et et e s 4-1
4.1 oA =T =T o 1S =] P RSRPRPR 4-2
4.2 MOVE CONAILIONAL ... e et e e e e 4-6
4.3 Move Half-Word — Zero-EXtENAEeeeiiiiiie e 4-8
4.4 Move Half-Word — Sign-EXIENAEccouuiiiiiiiieeieee et e e 4-10
4.5 MoVve ReQISTEr Half ... e e e e e e 4-12
4.6 Move Byte — Zero-EXIENUEcccoo ittt e e 4-17
4.7 Move Byte — SigN-EXtENAEdccooiiiiiiiiiiic e 4-19

Blackfin DSP Instruction Set Reference 7]

10

w

SEACK CONIOL. ...ttt e e e e e e e e e st abb e te et aaeaea e e e annbsbbneeeaaaaaaaaeanns 5-1
5.1 PUSI L ettt e e nnaees 5-2
5.2 PUSH MUIIPIE .t e e e e e e e e e e e e e e s e eeaeeeas 5-4
5.3 0] o USRS 5-6
5.4 0 o TN\ 1111 o] = PSPPI 5-9
5.5] 2=V T SEER PSP 5-14
Control Code Bit MANAgEMENT.........uuuiiiiiieeiee e e e e e e e e e e s eeaee e e e s e s snraearereeeaeeeanaannns 6-1
6.1 CoMPAre DAta REGISIETuuuieiiiiieeee ettt e e e e e e e e e e es e st areeeeaaeeeaeaaanns 6-2
6.2 (070] 101 0Tz 1L =T =011] (=Y P EPPEPR 6-5
6.3 (070 10T o L= 1 LI Yoo 1 411 - L (o) (SRR 6-7
6.4 IMIOVE CC.i ittt ettt ettt e e e e e e e e e et e e e e e e e e e 6-9
6.5 N0 = L PSSR 6-12
(oo [or= U@ o 1T - io] 1 1= SRR 7-1
7.1 Y VT PSSR 7-2
7.2 NOT (1'S COMPIEMENT) ...ttt e e e e e e e e e e e e e e e e e e s eeeeeaeas 7-4
7.3 1O PRSP 7-6
7.4 EXCIUSIVE-OR ...ttt e e e e et e e e e e e e e e e e e e nbaeeeeeeaens 7-8
7.5 Bit-WiSe EXCIUSIVE-ORcooiiiiiiiiiiiie ettt e e e 7-10
21 @ o =] =1 1o o S S PRP PR 8-1
8.1 2] O =T PRSPPI 8-2
8.2 2T USSR 8-4
8.3 2] O oo o [T PPPPPRR 8-6
8.4 2] I USSP 8-8
8.5 Bit FIEld DEPOSILeeeeeeieeee ettt e et e e e e e e e e 8-10
8.6 Bit FIeld EXIFACON......eeiiiiieiii ettt e e e e e e e e eeeeas 8-15
8.7 Bit MUIIPIEX ..ttt e et e e e e e e e e e e e nneeeeeee 8-20
8.8 ONES POPUIALION COUNT ...ttt e e e ereee e e e e e e e aennes 8-24
Shift / ROtAIE OPEIAtIONS.....coi ittt e e e e e e e e e e e e e e aaaaaeaaanaeanns 9-1
9.1 A WIth SRt e 9-2
9.2 SHIFEWIEN A, ... 9-4
9.3 ATNMELIC SNIfteeeeee e 9-6
9.4 [0 o L= IS o 1 SRRSO 9-11
9.5 0] €= L (= PP UPPPPPPPPRPRPRTR 9-16
YN 110 0= (o @] =T = L1 [L PEERURR 10-1
10.1 ADSOIULE VAIUE ...t e 10-2
0 T2 Vo [0 PP PPRRTPRPRPRR 10-4
10.3 Yo [0 B T g = To F= L= PR UUR TSR 10-7
10.4 DIVIAE PrIMILIVE ...ttt e et e e e e e e e e e e e e nneeeeees 10-9
10.5 EXPONENE DELECLIONeeiiiiiiiiii ittt e e e e e e e e e ee e 10-13
10.6 Y= D] 00 o TP UUURRPRPRI 10-15
10.7 YT o110 01U o PP EEPPRR 10-17
10.8 MOdIfy — DECTEIMENToiiiiiiiii et e e e e e e e e e e e e e e aneneeeee s 10-19
10.9 MOIfY — INCIEMENT ..o e e e e e e e e 10-21
L1020 MUIIPIY ettt e e e et e e e s s e e e s ebe e e e e snstbeae e s enneee s 10-24
10.11 Multiply and Multiply-Accumulate to ACCUMUIALONeveiiiiiiiiiiiiiiiieeeeeee e 10-28
10.12 Multiply and Multiply-Accumulate to Half-Registerccccceiiiiiiiiiiiiiiieee 10-31

Blackfin DSP Instruction Set Reference

Bma/(/?@&

10.13 Multiply and Multiply-Accumulate to Data Registercceeveeiieeeiiiiiiiiiiieeeeeeeen 10-36
10.14 MUtiply (MOAUIO 232) ..ottt 10-39
10.15 Negate (TW0o'S COMPIEMENT)eeiiiiiiiiiiiiiee e 10-41
10.16 ROUNA HAIf-WOTcooiii ettt e e e e e e e e e 10-43
O TS A = (o 10 [To I 2 2 | PP 10-45
10.18 ROUNG — 20 Bl ...eeiiiiiiiitiie ettt ettt ettt et e e et e e e sab e e e ebe e e s snaeeanneeas 10-47
T10O.19 SAIUIALE ..o e e e e e e e e et et e et e e e et et e e bbb b be b b e e e e e e e e e aaaas 10-49
L0.20 SHGN Bl eeie ittt e e neeas 10-51
TO.21 SUDBIACT .ttt e e e e e e e e e ettt e e e e e e e e e e e e nnbe e e e eaaeaeeas 10-53
10.22 SUDbtract IMMEAIALE.oe e 10-56
11 External EVent ManagemeNt............uuiiiiiiiiiiei ettt e e e e e e e e e e e e e 111
11.1 o [PP UPRRUPRPOPRPTUPI 11-2
11.2 COrE SYNCRIOMIZE ...ttt e e e e e e e e e e be e e aeaaaeens 11-4
11.3 SYSIEM SYNCRIONIZE ...t e e e e e e s 11-6
11.4 FOrCe EMUIBLION. ... et e e e e e e e e e e e e 11-8
115 DiSADIE INTEITUPLS. ...ttt e e e e e e e e e e e annes 11-10
11.6 ENADIE INTEITUPLS ...ttt e e e e e e e e e e e e e e 11-12
11.7 FOrce INTEITUPL / RESEL.......eeieiieeee et a e e e e e 11-14
11.8 FOICE EXCOPLION ...ttt e e e e et e e e e ae e e e annes 11-16
11.9 Test and Set Byte (ATOMIC)oouueiiiiiiiiie et e e 11-18
5 00 O T (o @] o T TP 11-20
12 (0Tl d LI @70 11 £ | IF PR TR 12-1
12.1 Data Cache PrefetCh ... 12-2
12.2 Data Cache FIUSNoooiiiii e 12-4
12.3 Data Cache Line INValdate..........c.cooiiiiiiiiiiiic e 12-6
12.4 INStruction Cache FIUSNooiiiii e 12-8
13 LY Lo LYo T (= I @] o T=T = L4 o 1 PPERERR 13-1
13.1 23V (AN [T | o USRS PPPPRPRT 13-2
13.2 Disable Alignment EXception fOr LOAMccouiiaiaiiiiiiiiiiiiee e 13-4
13.3 Du@l 16-Bit AQA 7 ClIP weeeieiie ittt ene e e enee s 13-6
13.4 Dual 16-Bit Accumulator Extraction with Addition............cccccceiiiiiiiiiiiiiiiiee e 13-10
13,5 QUAA 8-Bit AQG ...eeiiiiiiiie ittt bbb 13-12
13.6 QuAd 8-Bit AVEIAgE — BYLEeeeiiiiiiee ettt 13-16
13.7 Quad 8-Bit Average — Half-Word ... 13-20
13.8 QUAA 8-Bit PACK. ... teiiiiiiiiittiie ittt ettt 13-25
13.9 QUAA 8-Bit SUDIIACTeviiiiiiiieeeee e e 13-27
13.10 Quad 8-Bit Subtract-Absolute-Accumulate..............ooovviiiiiiiiiiiiiiiie e, 13-31
13.11 QUA 8-Bit UNPACK ...eeiiiieiiiiiie ettt e e e e e e e eaaeaaeas 13-35
14 [V /=Tor (o] Q@) o =T =1 To] o S T PP UPRRPTRR 14-1
14.1 Y Yo [0 o] 4IRS T | o PRSP 14-2
14.2 Compare-SelecCt (VIT _IMAX) ..t e e e e e e eeeeaaaae s 14-5
14.3 VeCtor ADSOIULE VAIUEooiiiiiii et a e e 14-10
14.4 VeCtOr Add / SUDIIACT......eeeiiieeee e e e e e e 14-12
14.5 Vector Arithmetic SHift ... e 14-16
14.6 Vector Logical Shift.........oooiiiiiiiii e 14-19
14.7 VT (o] g 1V = 04 410 RO URURURTRN 14-22
14.8 V2T o] g 1V T a1 a1 o TP UUURUPTR 14-24

Blackfin DSP Instruction Set Reference v

15

vi

14.9 VECION MUIIPIY ...ttt e e e e et eeeea e as 14-26
14.10 Vector Multiply and Multiply-ACCUMUIALEcooiiiiiiiiiiiiee e 14-28
14.11 Vector Negate (TWO'S COMPIEMENL)ueeiiiiiiiiieiiiiiiiieieie e a e e 14-32
L1412 VECEOI PACK ceiiiieiee ettt e e e e e e e e e e neas 14-34
I G R V= Tod (o g ST T (o] TP PPRURRR 14-36
Issuing Parallel INSIUCTIONSueiiiiiiiiiie ettt e e e e e e e e e e e e e e e e annnns 15-1
15.1 U 10 = Y S 15-2
15.2 Supported Parallel Combinationscuuvviiiiiieecic e 15-2
15.3 Parallel ISSUE SYNTAXuuiiiiieeeeeiiiiiiie et e e e e e e s st e e e e e e e s e st e e e e e e e e e e s sntnnaneeeees 15-2
15.4 32-Bit ALU/MAC INSTIUCHIONSooiiriiiiiiiieiiiie ittt 15-2
15.5 L16-BIt INSIIUCTIONS ...ttt 15-5
15.6 EXAMPIES ...ttt e e e e e e e e neen e 15-6
.. Index-1

Blackfin DSP Instruction Set Reference

Mmﬁg

FIGURES

1-1
1-2
7-1
7-2
7-3
7-4

10-1

Conventional Placement of Binal Point Within 40-, 32-, and 16-Bit Dataccccceeevvvvveeennen 1-6
Two Examples Showing an 8-Bit Number Reduced to 4 Bits of Precision...........ccccccceevvvvvnnnn. 1-8
Bit-Wise EXCIUSIVE OR REUUCTION.........oiiuiiiiieiiiiie ettt et e s 7-11
A0 Left Shifted by 1 Followed by XOR ReAUCHIONuuuiiiiiieeeeeiiiiiiiie e e e e e 7-12
XOR of AOQ, Logical AND With the D-ReEQISTEruuuiiiiiiieee it a e 7-12
XOR of A0 logical AND with A1 with Results Left-Shifted into LSB of A0cccccvvvevveeeneenn. 7-13
XOR of A0 Logical AND with A1 with Results Placed in CC Flag

and LSB Of DeStINAtION REQISIEIuuuiiiiieeiieii it e e e e s e s e e e e e e e s s s raeeaeaeeeeanaannes 7-14
Bit Addition Flow for the Bit Reverse (BREV) CaSE......ccccuuviiiiiiieeeiiieiciiiiiee e e e 10-22

Blackfin DSP Instruction Set Reference vii

Blﬂl.’l(/r@

viii Blackfin DSP Instruction Set Reference

m@ﬁg

TABLES

1-1
1-2
1-3
2-1
2-2

4-2
9-1

10-1
10-2
10-3

10-4

13-1
13-2
14-1
14-2
15-1
15-2
15-3

Lo IS (] £ PP TP 1-4
PrOCESSON SECLONSeiiiiieiiie ettt e bt e e et e e et e e e e enees 1-5
Arithmetic Status Flag SUMMAIYooiiiiiie et e e e e e 1-5
Types Of RETUIN INSTIUCTION ...ttt e e e e e e e e e et eeaeeaeeeanna 2-9
Required Mode for the Return INSTIUCLIONoooi i 2-9
Accumulator t0 Data RegIStEr IMOVE.........uuiiiiiiiaaie ittt e e e e e e eeeaaeeas 4-3
Accumulator to Half D-Register Move OPtiONS........oociiiiiiiiiiee e 4-14
AMTNMETIC SRITES L.t 9-8
(oo (o= I o 11 £ PRI 9-13
Y IU] LT o] YA @] o] (o] o F= SRS 10-25
Options for Multiply and Multiply-Accumulate to ACCUMUIALONeeviiieeiiiiiiiiiiiiieeiee e 10-29
Operand and Accumulator Copy Options of Multiply and Multiply-Accumulate

10 Half-REGISTEN ...ttt e e e e e e e e e eaeeaeans 10-33
Operand and Accumulator Copy Options of Multiply and Multiply-Accumulate

LEO T = = T =T 1S3 (Y RSO SEPR 10-37
Options for Quad 8-Bit AVErage — BYLEcouuiiiiiiiiiiie et e 13-18
Options for Quad 8-Bit Average — Half-Word ... 13-22
Options fOr OPt_MOAE O ...ttt e e e e e e e e e e s et eeeaaaaaaaeaanns 14-13
COMPATE MOUES ...ttt oottt et e e e e e e e ettt e e e e e e e e aa e e annbbbbeeeeeaaaaaeeeaannannes 14-37
32-Bit DSP INSIIUCTIONSeiiiiiiie ittt e e e e e eee e 15-3
Groupl Compatible 16-Bit INSLIUCLIONSooiiiiiiiiei e 15-5
Group2 Compatible 16-Bit INSLIUCLIONSociiiiiiiiie e e e e 15-6

Blackfin DSP Instruction Set Reference x

Blﬂl.’l(/r@

Blackfin DSP Instruction Set Reference

INTRODUCTION

11
1.2

13
14

15

16
1.7

Manual Organi ZaEiONccccveeeeiereresereesseseeseseesesesesre e seessesseseeseesseseenes 1-2
SYNEAX CONVENTIONScueiuiieieiiierieie ettt see st se e e e 1-2
1.2.1 Case SENSILIVITY .oovceeeieceisesestiie et e e 1-2
122 FrEEFOMELc.eoiiviitiiit ettt s 1-2
1.2.3 InStruction DEliIMItiNGcccccveiveirireceree e e 1-2
1.2.4 COMIMENTS ..ot s e s 1-3
NOLatiON CONVENLIONSvivieereireseere e 1-3
Behavior CONVENLIONScciueeirieiieie ettt 1-4
1.4.1 ACCUMUIBLON SBEUFBLTON ...vvvrevereieseseeeeee e 1-4
GlOSSAIY ettt ettt b bbb e e e et n e 1-4
ST o S (g N =T 1 1-4
152 FUNCLiONal UNITS ..ottt e 1-5
1.5.3 Arithmetic StatUS FIagScccovevveviriiree e 1-5
1.5.4 Fractional COnVENTIONccoeireririnierieresiere e 1-6
L1.5.5 SIUFELION w.veveieeiiceeicres e 1-6
1.5.6 Rounding and TrUNCELINGcc.coeeeeerienenere st 1-7
Related REFEIENCESovcevireriereirese s 1-8
Document Errata SIghtiNgSccoeoeeereririnene e 1-9

Blackfin DSP Instruction Set Reference

1-1

Introduction ”’””"/’@&

1.1

1.2

1.2.1

1.2.2

1.2.3

The Blackfin DSP I nstruction Set Reference provides details about the assembly language
instructions used by the BlackfinDSP core developed jointly by Analog Devices, Inc. and Intel
Corporation. This section points out some of the conventions used in this document.

Manual Organization

The instructions are grouped according to their functions. Within groupings, the instructions are
generally arranged alphabetically unless afunctional relationship makes another order clearer for
the programmer. One such example of non-alphabetic ordering isthe Load / Store section where
the Load Pointer Register appears before a pile of seven Load Data Register derivations. The
instructions are listed at the beginning of each chapter in the order they appear.

Theinstruction groups, or chapters, are arranged according to compl exity, beginning with the basic
Program Flow Control and Load / Store chapters and progressing to Video Pixel Operations and
Vector Operations.

Syntax Conventions

The Blackfin instruction set supports several syntactic conventions that appear throughout this
document. Those conventions are given below.

Case Sensitivity

Theinstruction syntax is case insensitive. Upper and lower case letters can be used and intermixed
arbitrarily.

The assembler treats register names and instruction keywordsin a case-insensitive manner. User
identifiers are case sensitive. Thus, R3.I, R3.L, r3.l, r3.L are all valid, equivalent input to the
assembler.

This manual shows register names and instruction keywords in examples using lower case.
Otherwise, in explanations and descriptions, this manual uses upper case to help the register names
and keywords stand out among text.

Free Format

Assembler input is free format, and may appear anywhere on the line. One instruction may extend
across multiple lines, or more than one instruction appear on the same line. White space (space,
tab, comments, or newling) may appear anywhere between tokens. A token must not have
embedded spaces. Tokens include numbers, register names, keywords, user identifiers, and also
some multi-character special symbolslike "+=", "/*", or "||".

Instruction Delimiting

A semicolon must terminate every instruction. Several instructions can be placed together on a
single line at the programmer’s discretion, provided each instruction ends with a semicolon.

Blackfin DSP Instruction Set Reference

Bma/(/?@ Introduction

Each complete instruction must end with a semicolon. Sometimes, a compl ete operation will
consist of more than one operation. There are two cases:

¢ Two general operations are combined. Normally a comma separates the different parts, asin
a0=r3.h*r2l,al=r3.l*r2h;

¢ A general instruction is combined with one or two memory references for joint issue. The
latter portions are set off by a“||” token. For example,
a0 =r3.h* r2l | rl=[p3++], r4 =[i2++];

1.2.4 Comments

The assembler supports various kinds of comments, including the following:

* End of line: A double forward slash token (“//") indicates the beginning of a comment that
concludes at the next newline character.

* General comment: A general comment beginswith the token "/*" and ended with "*/". It may
contain any characters and extend over multiple lines.

Comments are not recursive; if the assembler seesa"/*" within ageneral comment, it issues an
assembler warning. A comment functions as white space.

1.3 Notation Conventions

This manual and the assembler use the following conventions:

* Register names are al phabetic, followed by a number in cases where there are more than one
register inalogica group. Thus, examplesinclude ASTAT, FP, R3, and M2.

* Some operations require aregister pair. Register pairs are always Data Registers and are
denoted using acolon, i.e., R3:2. The larger number must iswritten first. Note: The hardware
supports only odd-even pairs. i.e., R7:6, R5:4, R3:2, and R1:0.

* Some instructions require a group of adjacent registers. Adjacent registers are denoted by the
range enclosed in brackets, i.e., R[7:3]. Again, the larger number appears first.

¢ Portions of aparticular register may beindividually specified. Thisiswritten with adot (".")
following the register name, then aletter denoting the desired portion. For 32-bit registers,
".H" denotes the most-significant ("High") portion, ".L" denotes the least-significant portion.
The subdivisions of the 40-bit registers are described | ater.

Register names are reserved and may not be used as program identifiers.

This manual uses the following conventions:

* When thereis achoice of any one register within aregister group, this manual showsthe
register set using elipsis marks (“..."). For example, “RO0, ..., R7” means that any one of the
eight Data Registers can be used.

* Immediate values are designated as “imm” with the following modifiers:
— “imm” indicates asigned value; for example imm?7.
— the“u” prefix indicates an unsigned value; for example, uimm4.

— the decimal number indicates how many bits the value can include; for example, imm5 is
a5-bit value.

Blackfin DSP Instruction Set Reference 1-3

Introduction

Blﬂl.’l(/r@&

— any alignment requirements are designated by an optional “m” suffix followed by a
number; for example, uimm16m2 is an unsigned, 16-bit integer that must be an even
number, and imm7m4 is a signed, 7-bit integer that must be a multiple of 4.

1.4 Behavior Conventions

1.4.1 Accumulator Saturation

All operations that produce aresult in an Accumulator saturate to a 40 bit quantity unless noted
otherwise. See Section 1.5.5, “ Saturation,” on page 1-6 for a description of saturation behavior.

1.5 Glossary

Thefollowing terms appear throughout this document. Without trying to explain the Blackfin, here
are the terms used with their definitions. See the ADSP-21535 Blackfin DSP Hardware

1.5.1

Reference for details about the architecture.

Register Names

The architecture includes the following registers:

Table 1-1. Registers

Register

Description

Accumulators

The set of 40-bit registers A1 and A0 that normally contain data that is being
manipulated. Each Accumulator can be accessed as four registers — one 32-bit
register (designated as A1.W or A0.W), two 16-bit registers similar to Data registers
(designated as A1.H, Al.L, AO.H, or A0.L) and one 8-bit register (designated A1.X
or A0.X) for the bits that extend beyond bit 31.

Data Registers

The set of 32-bit registers RO, R1, ..., R6, R7 that normally contain data for
manipulation. Abbreviated D-register or Dreg. Data registers can be accessed as
32-bit registers, or optionally as two independent 16-bit registers. The least
significant 16-bits of each register is called the “low” half and is designated with “.L"
following the register name. The most significant 16-bit is called the “high” half and
is designated with “.H” following the name. Example: R7.L, r2.h, r4.L, RO.h.

Pointer
Registers

The set of 32-bit registers PO, P1, ..., P4, P5, including SP and FP that normally
contain byte addresses of data structures. Accessed only as a 32-bit register.
Abbreviated P-register or Preg. Example: p2, p5, fp, sp.

Stack Pointer

SP; contains the 32-bit address of the last occupied byte location in the stack. The
stack grows by decrementing the Stack Pointer. A subset of the Pointer Registers.

Frame Pointer

FP; contains the 32-bit address of the previous Frame Pointer in the stack, located
at the top of a frame. A subset of the Pointer Registers.

Loop Top

LTO and LT1; contains 32-bit address of the top of a zero overhead loop.

Loop Count

LCO and LC1,; contains 32-bit counter of the zero overhead loop executions.

Loop Bottom

LBO and LB1; contains 32-bit address of the bottom of a zero overhead loop.

Index Register

The set of 32-bit registers 10, 11, 12, I3 that normally contain byte addresses of data
structures. Abbreviated I-register or Ireg.

Blackfin DSP Instruction Set Reference

Bma/(/?@ Introduction

Table 1-1. Registers

Register Description

The set of 40-bit registers A1 and A0 that normally contain data that is being
manipulated. Each Accumulator can be accessed as four registers — one 32-bit
Accumulators | register (designated as A1.W or A0.W), two 16-bit registers similar to Data registers
(designated as A1.H, Al1.L, AO.H, or AO.L) and one 8-bit register (designated A1.X
or A0.X) for the bits that extend beyond bit 31.

Modify The set of 32-bit registers M0, M1, M2, M3 that normally contain offset values that
Registers are added or subtracted to one of the Index registers. Abbreviated as Mreg.

Length The set of 32-bit registers L0, L1, L2, L3 that normally contain the length (in bytes)
Registers of the circular buffer. Abbreviated as Lreg.

The set of 32-bit registers B0, B1, B2, B3 that normally contain the base address (in

Base Registers bytes) of the circular buffer. Abbreviated as Breg.

1.5.2 Functional Units

The architecture includes two processor sections:

Table 1-2. Processor Sections

Processor Description

Data Address Generator | Calculates the effective address for indirect and indexed memory accesses.
(DAG) Consists of two sections — DAGO and DAG1.

Multiply and Accumulate | Performs the arithmetic functions on data. Consists of two sections (MACO and
Unit (MAC) MAC1) each associated with an Accumulator (A0 and A1, respectively).

1.5.3 Arithmetic Status Flags

The Micro Signal Architecture (MSA) includes 12 arithmetic status flags that indicate specific
results of a prior operation. These flags reside in the Arithmetic Status (ASTAT) Register. A
summary of the flags appears below. All flags are active high. Instructions regarding P-registers, |-
registers, L-registers, M-registers, or B-registers do not affect flags.

See the ADSP-21535 Blackfin DSP Hardware Reference for details.

Table 1-3. Arithmetic Status Flag Summary

Flag Description
ACO Carry (ALUO)
AC1 Carry (ALU1)
AN Negative
AQ Quotient
AVO0 Accumulator 0 Overflow
AVSO Accumulator 0 Sticky Overflow; set when AVO is set, but remains set until explicitly
cleared by user code
AV1 Accumulator 1 Overflow

Blackfin DSP Instruction Set Reference 1-5

Introduction ”’””"/’@&

Table 1-3. Arithmetic Status Flag Summary

1.5.4

Flag Description
AVS1 Accumulator 1 Sticky Overflow; set when AV1 is set, but remains set until explicitly
cleared by user code
AZ Zero
CcC Control Code bit; multi-purpose flag set, cleared and tested by specific instructions
\% Overflow for Data Register results

Sticky Overflow for Data Register results; set when V is set, but remains set until

VS explicitly cleared by user code

Fractional Convention

Fractional numbers include sub-integer components less than +/-1. Whereas decimal fractions
appear to theright of adecimal point, binary fractions appear to the right of abinal point.

DSP instructions that assume placement of a binal point, for example in computing sign bits for
normalization or for alignment purposes, the binal point convention depends on the size of the
register being used. For 40-bit registers, data is assumed to be in 9.31 fraction notation, where
there are 31 fractional bits, 8 extension bits, and one sign bit. For 32-bit registers, data is
represented in 1.31 fraction notation, with one sign bit and 31 fractional bits. For 16-bit registers,
data is represented in 1.15 fractional notation. This processor does not represent fractional values
in 8-bit registers.

Figure 1-1. Conventional Placement of Binal Point Within 40-, 32-, and 16-Bit Data

1.5.5

40-bit accumulator
[S| 8bitextension | 31-bit fraction |

32-bit register
[S] 31-bit fraction |

16-bit register half
[S] 15-bit fraction

binal point alignment j

Saturation

When the result of a arithmetic operation exceeds the range of the destination register, important
information can be | ost.

Saturation is atechnique used to contain the quantity within the values that the destination register
can represent. When avalue is computed that exceeds the capacity of the destination register, then
the value written to the register is the largest value that the register can hold with the same sign as
the original.

* |f an operation would otherwise cause a positive value to overflow and become negative,
saturation limits the result to the maximum positive value for the size register being used,
instead.

Blackfin DSP Instruction Set Reference

Bma/(/?@ Introduction

* Conversdly, if an operation would otherwise cause a negative value to overflow and become
positive, saturation the result to the maximum negative value for the register size.

The overflow arithmetic flag is never set by an operation that enforces saturation.

The maximum positive value in a 16-bit register is Ox7FFF . The maximum negative value is
Oxl%OOO. For asigned 2's complement 1.15 fractional notation, the allowable rangeis -1 through (1-
).
The maximum positive value in a 32-bit register is Ox7FFF FFFF. The maximum negative value is
0x8000 0000. For a signed 2's complement fractional datain 1.31 format, the range of values that
the register can hold are -1 through (1-23%).

The maximum positive value in a40-bit register is 0x7F FFFF FFFF. The maximum negative value
is 0x80 0000 0000. For asigned 2's complement 9.31 fractional notation, the range of values that
can be represented is -256 through (256-2'31).

For example, if a 16-bit register containing 0x1000 (decimal integer +4096) was shifted left 3
places without saturation, it would overflow to 0x8000 (decimal -32,768). With saturation,
however, aleft shift of 3 or more places would always produce the largest positive 16-bit number,
Ox7FFF (decimal +32,767).

Another common example is copying the lower half of a 32-hit register into a 16-bit register. If the
32-hit register contains OXFEED OACE and the lower half of this negative number is copied into a
16-bit register without saturation, the result is OXOACE, a positive number. But if saturation is
enforced, the 16-bit result maintains its negative sign and becomes 0x8000.

The MSA implements 40-bit saturation for al arithmetic operations that write an Accumulator
destination except as noted in the individual instruction descriptions when an optional 32-bit
saturation mode can constrain a 40-bit Accumulator to the 32-bit register range. The MSA
performs 32-bit saturation for 32-bit register destinations only as noted in the instruction
descriptions.

Overflow isthe alternative to saturation. The number is allowed to simply exceed its bounds and
lose its most significant bit(s); only the lowest (least-significant) portion of the number can be
retained. Overflow can occur when a 40-bit value is written to a 32-bit destination. If there was
any useful information in the upper 8 bits of the 40-bit value, then information islost in the
process. Some processor instructions report overflow conditions in the arithmetic flags, as noted in
the instruction descriptions. The arithmetic flags reside in the Arithmetic Status (ASTAT) register.
See the ADSP-21535 Blackfin DSP Hardware Reference for details about the ASTAT register.

1.5.6 Rounding and Truncating

Rounding is a means of reducing the precision of a number by removing alower-order range of bits
from that number’s representation and possibly modifying the remaining portion of the number to
more accurately represent its former value. For example, the original number will have N bits of
precision, whereas the new number will have only M bits of precision (where N>M), so N-M bits
of precision are removed from the number in the process of rounding.

The round-to-nearest method returns the closest number to the original. By convention, an

original number lying exactly halfway between two numbers always rounds up to the larger of the
two. For example, when rounding the 3-bit, 2's complement fraction 0.25 (binary 0.01) to the

Blackfin DSP Instruction Set Reference 1-7

Introduction ”’””"/’@&

nearest 2-bit 2's complement fraction, this method returns 0.5 (binary 0.1). The original fraction
lies exactly midway between 0.5 and 0.0 (binary 0.0), so this method rounds up. Becauseit always
rounds up, this method is called biased rounding.

The conver gent rounding method also returns the closest number to the original. However, in
cases where the original number lies exactly halfway between two numbers, this method returns
the nearest even number, the one containing an LSB of 0. So for the example above, the result
would be 0.0, since that is the even numbered choice of 0.5 and 0.0. Since it rounds up and down
based on the surrounding values, this method is called unbiased rounding.

Some instructions for this processor support biased and unbiased rounding. The RND_MOD bit in
the Arithmetic Status (ASTAT) register determines which mode is used. See the ADSP-21535
Blackfin DSP Hardware Reference for details about the ASTAT register.

Another common way to reduce the significant bits representing a number isto simply mask off the
N-M lower bits. This processisknown astruncation and resultsin arelatively large bias.

The figures below show other examples of rounding and truncation methods.

Figure 1-2. Two Examples Showing an 8-Bit Number Reduced to 4 Bits of Precision

1.6

1-8

0 1 0 0 1 0 0 0 original 8-bit number (0.5625)
0 1 0 1 4-bit biased rounding (0.625)
0 1 0 0 4-bit unbiased rounding (0.5)
0 1 0 0 4-bit truncation (0.5)

0 1 0 0 1 0 1 0 original 8-bit number (0.578125)
0 1 0 1 4-bit biased rounding (0.625)

0 1 0 1 4-bit unbiased rounding (0.625)
0 1 0 0 4-bit truncation (0.5)

Related References

The ADSP-21535 Blackfin DSP Hardwar e Reference describes the Blackfin architecture, register
set, and behavior.

Blackfin DSP Instruction Set Reference

Bma/(/?@ Introduction

1.7 Document Errata Sightings

This document contains errors, but the authors do not know about them, yet. Errata sightings are
expected and encouraged. Please send comments, criticisms, and encouragements to
Mike.J.Pulley @intel.com with “MSA ISR Feedback: <your descriptive title, here>" (without the
guotes) in the subject line. All valid errata sightings are appreciated and will be incorporated in
future releases of this document.

Blackfin DSP Instruction Set Reference 1-9

Introduction ”’””"/’@&

1-10 Blackfin DSP Instruction Set Reference

PROGRAM FLOW CONTROL

Instruction Summary

This chapter discusses the instructions that control program flow. Users can take advantage of

these instructions to force new valuesinto the Program Counter and change program flow, branch

conditionally, set up loops, and call and return from subroutines.

A8 RN 01 o TSRS URTURUR PR
2.2 CoNitioNal JUMPoveieieiriciirieisieisiees et
2.3 Call bttt
24 REIUM oo e
25 Zero-Overhead LOOP SELUD ...coeivireerieieeieiereeie et

Blackfin DSP Instruction Set Reference

Program Flow Control ”’””"/’@&

2.1

2.1.1

2.1.2

2.1.3

214

2.1.5

Jump

General Form

JUMP

JUMPS

JUMPL

Syntax

JUMP (Preg) ; /* indirect to an absolute (not PC-relative)
address (a) */

JUMP (PC+ Preg) ; /I PC relative, indexed (a)

JUMP pcrelm2 ; I* PC relative, immediate 1 (a) or (b), see
Section 2.1.5, “Functional Description” */

JUMPS perel13m2 ; /I PC relative, immediate, short (a)

JUMPL pcrel25m2 ; /I PC relative, immediate, long (b)

Syntax Terminology

Preg: PO, ..., P5, SP, FP

pcrelm2: undetermined 25-bit or smaller signed, even relative offset, with arange of -16,777,216
through 16,777,214 bytes (OxFF00 0000 to 0x00FF FFFE)

pcrel13m2: 13-bit signed, even relative offset, with arange of -4096 through 4094 bytes (OxFO00
to OXOFFE)

pcrel25m2: 25-hit signed, even relative offset, with arange of -16,777,216 through 16,777,214
bytes (0xFF00 0000 to Ox00FF FFFE)

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length. Comment (b) identifies 32-bit
instruction length.

Functional Description

The Jump instruction forces a new value into the Program Counter (PC) to change program flow.

In the Indirect and Indexed versions of the instruction, the value in Preg must be an even number
(bit0=0) to maintain 16-bit address alignment. Otherwise, an odd offset in Preg causes the
processor to invoke an alignment exception.

1. This instruction can be used in assembly-level programs when the final distance to the target is unknown at coding time. The
assembler substitutes the opcode for JUMP.S or JUMP.L depending on the final target. Disassembled code shows the
mnemonic JUMP.S or JUMP.L.

2-2

Blackfin DSP Instruction Set Reference

Bma/(/?@

2.1.6 Flags Affected

None

2.1.7 Required Mode

User & Supervisor

2.1.8 Parallel Issue

Program Flow Control

The Jump instruction cannot be issued in parallel with other instructions.

2.1.9 Example

jump (p5);
jump (pc+p2);
jump 0x224 ;

jump.s 0x224 ;
jump.| OXFFFACESG ;

jump get_new_sample;

2.1.10 Also See

Branch, Call

2.1.11 Special Applications

Blackfin DSP Instruction Set Reference

/* offset is positive in 13 bits, so target addressis
PC + 0x224, aforward jump */

/I same as above with jump “short” syntax

/* offset is negative in 25 bits, so target addressis
PC + Ox1FA CE86, a backwards jump */

/I assembler resolved target, abstract offsets

Program Flow Control ”’””"/’@&

2.2

22.1

2.2.2

2.2.3

224

2.2.5

2.2.6

Conditional Jump

General Form

IF CCJUMP

IF!ICCIUMP

Syntax

IF CC JUMP pcrell1m2 ; /I Branch if CC=1, branch predicted as not taken 2 @
IF CC JUMP pcrel11m2 (bp) ; // Branch if CC=1, branch predicted as taken 2 (a)
IF!CCJUMP pcrelllm2 ; // Branch if CC=0, branch predicted as not taken 3 @
IF!CC IJUMP pcrel11m2 (bp) ; /I Branch if CC=0, branch predicted as taken 3)

Syntax Terminology

pcrel11m?2: 11-bit signed even relative offset, with arange of -1024 through 1022 bytes (OXxFC00
to OXO3FE). This value can optionally be replaced with an address label that is evaluated and
replaced during linking.

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

The Conditional Jump instruction forces a new value into the Program Counter (PC) to change the
program flow, based on the value of the CC hit.

Therange of valid offset values is —1024 through 1022.

Option

The Branch Prediction appendix (bp) helps the processor improve branch instruction performance.
The default is branch-predicted-not-taken. By appending (bp) to the instruction, the branch
becomes predicted-taken.

Typically, code analysis shows that a good default condition isto predict branch-taken for branches
to aprior address (backwards branches), and to predict branch-not-taken for branches to
subsequent addresses (forward branches).

2. CCbit =1 causes a branch to an address, computed by adding the signed, even offset to the current PC value.
3. CC hit = 0 causes a branch to an address, computed by adding the signed, even relative offset to the current PC value.

2-4

Blackfin DSP Instruction Set Reference

Bma/(/?@

2.2.7 Flags Affected

None

2.2.8 Required Mode

User & Supervisor

2.2.9 Parallel Issue

Program Flow Control

Thisinstruction cannot be issued in parallel with other instructions.

2.2.10 Example

if cc jump OXFFFFFEQS (bp) ;
if cc jump Ox0B4 ;
if lcc jump OXFFFFFC22 (bp) ;

if l'ccjump 0x120;

if cc jump dest_labdl ;

2.2.11 Also See

Jump, Call

2.2.12 Special Applications

Blackfin DSP Instruction Set Reference

* offset is negative in 11 bits, so target
addressis a backwards branch, branch
predicted */

/* offset is positive, so target offset
addressis aforwards branch, branch
not predicted */

[* negative offset in 11 bits, so target
address is a backwards branch, branch
predicted */

[* positive offset, so target addressisa
forwards branch, branch not predicted */

/* assembler resolved target, abstract
offsets*/

Program Flow Control ”’””"/’@&

2.3

2.3.1

2.3.2

2.3.3

234

2.3.5

2.3.6

2.3.7

2.3.8

Call

General Form

CALL

Syntax

CALL (Preg); [* indirect to an absolute (not PC-relative)
address (a) */

CALL (PC+Preg); I/ PC-relative, indexed (a)

CALL pcrel25m2 ; /I PC-relative, immediate (b)

Syntax Terminology

Preg: PO, ..., P5 (SP and FP are not allowed as the source register for thisinstruction.)

pcrel256m2: 25-bit signed, even, PC-relative offset; can be specified as a symbolic address |abel,
with arange of -16,777,216 through 16,777,214 (OxFF00 0000 to OxOOFF FFFE) bytes.

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length. Comment (b) identifies 32-bit
instruction length.

Functional Description

The Call instruction calls a subroutine from an address that a P-register points to or by using a PC-
relative offset. After the CALL instruction executes, the RETS register contains the address of the
next instruction.

The value in the Preg must be an even value to maintain 16-bit alignment.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

Thisinstruction cannot be issued in parallel with other instructions.

Blackfin DSP Instruction Set Reference

Bma/(/?@

2.3.9 Example

cal (p5);

cal (pc+p2);

call 0x123456 ;

call get_next_sample;

2.3.10 Also See

Return, Jump, Conditional Jump

2.3.11 Special Applications

Blackfin DSP Instruction Set Reference

Program Flow Control

2-7

Program Flow Control ”’””"/’@&

2.4 Return

24.1 General Form

RTS, RTI, RTX, RTN, RTE

2.4.2 Syntax

RTS; // Return from Subroutine (a)

RTI ; I/l Return from Interrupt (a)

RTX; I/ Return from exception (@)

RTN ; // Return from NMI (@)

RTE; // Return from Emulation (@)
2.4.3 Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

2-8 Blackfin DSP Instruction Set Reference

Bma/(/?@ Program Flow Control

2.4.4 Functional Description

The Return instruction forces a return from a subroutine, maskable or NMI interrupt routine,
exception routine, or emulation routine (see Table 2-1).

Table 2-1. Types of Return Instruction

Mnemonic Description

Forces a return from a subroutine by loading the value of the RETS register into
the Program Counter (PC), causing the processor to fetch the next instruction
RTS from the address contained in RETS. For nested subroutines, you must save the
value of the RETS register. Otherwise, the next subroutine CALL instruction
overwrites it.

Forces a return from an interrupt routine by loading the value of the RETI register
into the PC. When an interrupt is generated the processor enters a non-
interruptible state. Saving RETI to the stack re-enables interrupt detection so
that subsequent, higher priority interrupts can be serviced (or “nested”) during the
current interrupt service routine. If RETI is not saved to the stack, higher priority
interrupts are recognized but not serviced until the current interrupt service
routine concludes. Restoring RETI back off the stack at the conclusion of the
interrupt service routine masks subsequent interrupts until the RTI instruction
executes. In any case, RETI is protected against inadvertent corruption by
higher priority interrupts.

RTI

Forces a return from an exception routine by loading the value of the RETX

RTX register into the PC.

Forces a return from a non-maskable interrupt (NMI) routine by loading the value

RTN of the RETN register into the PC.

Forces a return from an emulation routine and emulation mode by loading the
value of the RETE register into the PC. Because only one emulation routine can
run at a time, nesting is not an issue, and saving the value of the RETE register is
unnecessary.

RTE

2.4.5 Flags Affected

None

2.4.6 Required Mode

Table 2-2 identifies the modes required by the Return instruction.

Table 2-2. Required Mode for the Return Instruction

Mnemonic Required Mode

RTS User & Supervisor

Supervisor only. Any attempt to execute in User mode produces a

RTI, RTX, and RTN . s .
protection violation exception.

Emulation only. Any attempt to execute in User mode or Supervisor

RTE "
mode produces an exception.

Blackfin DSP Instruction Set Reference 2-9

Program Flow Control

2.4.7

2.4.8

2.4.9

2.4.10

2-10

Parallel Issue

Blﬂl.’l(/r@&

Thisinstruction cannot be issued in parallel with other instructions.

Example

rs;
rti;
rtx ;
rn;
rte;

Also See

Call, Push, Pop

Special Applications

Blackfin DSP Instruction Set Reference

Bma/(/?@ Program Flow Control

2.5 Zero-Overhead Loop Setup
2.5.1 General Form
First Form
LSETUP (Begin_Loop, End_Loop) Loop_Counter
Second Form

LOOP loop_name loop_counter
LOOP_BEGIN loop_name
LOOP_END loop_name

2.5.2 Syntax

For Loop0

LSETUP (pcrel5m2, Ipperel1dm2) LCO; I (b)

LSETUP (pcrel5m2 , Ippecrel11m2) LCO = Preg ; /I autoinitialize LCO (b)
LSETUP (pcrel5m2, Ippcrel11m2) LCO = Preg >> 1 ;// autoinitialize LCO (b)

LOOP loop nameLCO; I (b)

LOOP loop_name LCO = Preg ; [/ autoinitialize LCO (b)
LOOPIloop_namelLCO=Preg>>1; I autoinitialize LCO (b)
For Loopl

LSETUP (pcrel5m2, Ippcrel11m2) LC1; I (b)

LSETUP (pcrel5m2, Ippcrel11m2) LC1 = Preg ; // autoinitialize LC1 (b)
LSETUP (pcrel5m2 , Ippcrel1dm2) LC1 = Preg >> 1 ;// autoinitialize LC1 (b)

LOOP loop_nameLC1; Il (b)

LOOP loop_name LC1 = Preg ; [/ autoinitialize LC1 (b)

LOOPIloop namelLCl=Preg>>1; I/ autoinitialize LC1 (b)

LOOP_BEGIN loop_name; /I define the first instruction of the loop (b)
LOOP_END loop_name; /I define the last instruction of the loop (b)

Blackfin DSP Instruction Set Reference 2-11

Program Flow Control ”’””"/’@&

2.5.3

254

2.5.5

2-12

Syntax Terminology

Preg: PO, ..., P5 (SP and FP are not allowed as the source register for thisinstruction.)

pcrel5m2: 5-bit unsigned, even, PC-relative offset; can be replaced by a symbolic label. The range
is4to 30, or 2°-2.

Ippcrel11m2; 11-hit unsigned, even, PC-relative offset for aloop; can be replaced by a symbolic
label. Therange is 4 to 2046 (0x0004 to OXO7FE), or 21 -2.

loop_name: a symbolic address label

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Zero-Overhead L oop Setup instruction provides a flexible, counter-based, hardware loop
mechanism that provides efficient, zero-overhead software loops. In this context, zero-overhead
means that the software in the loops does not incur a penalty for decrementing a counter, evaluating
aloop condition, then calculating and branching to a new target address.

The architecture includes two sets of three registers each to support two independent, nestable
loops. The registersare Loop_Top (LTn), Loop Bottom (LBn) and Loop_Count (LCn).
Consequently, LTO, LBO, and L CO describe Loop0, and LT1, LB1, and L C1 describe Loopl.

The LSETUP and LOOP instructions are a convenient way to intialize al threeregistersin asingle
instruction. The size of the LSETUP and LOOP instructions can only support just so many bits, so
the loop range is limited. However, LTO and LT1, LBO and LB1 and LCO and LC1 can be
initialized manually using Move instructions if loop length and repetition count need to be beyond
the limits supported by the LSETUP or LOOP syntax. Thus, a single loop can span the entire 4GB
of memory space.

The LSETUP instruction accepts an optional initialization value from a P-register or P-register
divided by 2.

An alternative syntax to accomplish the same result is the LOOP, LOOP_BEGIN, LOOP_END
instruction sequence. This syntax contains the same information as the LSETUP syntax, but in a
more readable, user-friendly format.

If LCn is non-zero when the fetch address equals L Bn, the processor decrements LCn and places
the address in LTn into the PC. The loop always executes once through since the Loop_Count is
evaluated at the end of the loop.

A value of 0 (zero) in the Loop_Count disables the hardware |oop mechanism, causing the
instructions enclosed by the loop pointers to be executed as straight-line code.

In the instruction syntax, the designation of the loop counter — L CO or L C1 — determines which
loop level isinitialized. Consequently, to initialize LoopO, code L CO; to initialize Loopl, code
LCL.

In the case of nested loops that end on the same instruction, the processor requires Loop0 to

describe the outer loop and Loopl to describe the inner loop. The user is responsible for meeting
this requirement.

Blackfin DSP Instruction Set Reference

Bma/(/?@

2.5.6
2.5.7

2.5.8

Program Flow Control

For example, if LBO=LB1, then the processor assumesloop 1 istheinner loop and loop 0 the outer
loop.

Just like entries in any other register, loop register entries can be saved and restored. If nesting
beyond two loop levelsis required, the user can explicitly save the outermost loop register values,
re-use the registers for an inner loop, then restore the outermost loop values before terminating the
inner loop. In such a case, remember that loop 0 must always be outside of loop 1. Alternately, the
user can implement the outermost loop in software with the Conditional Jump structure.

Begin_L oop, the value loaded into LTn, is a 5-bit, PC-relative, even offset from the current
instruction to the first instruction in the loop. The user is required to preserve half-word alignment
by maintaining even valuesin this register. The offset is interpreted as a one's complement,
unsigned number, eliminating backwards loops.

End_L oop, the value loaded into LBn, is an 11-bit, unsigned, even, PC-relative offset from the
current instruction to the last instruction of the loop.

When using the LSETUP instruction, Begin_Loop and End_Loop are typically address |abels. The
linker replaces the labels with offset values, as usual.

A loop counter register (LCO or LC1) counts the trips through the loop. The register contains a 32-
bit unsigned value, supporting as many as 4,294,967,294 trips through the loop. The loop is
disabled (subsequent executions of the loop code pass through without reiterating) when the loop
counter equals 0.

Thelast instruction of the LSETUP loop must not be a branch instruction. Aslong as the hardware
loop is active (that is., the Loop_Count is non-zero), a branch instruction at the End_L oop address
produces undefined execution. If a branch instruction comes last in the LSETUP loop, no
exception is generated. Branch instructions that are located anywhere else in the defined loop
execute normally.

Also, the last instruction in the LSETUP loop must not modify the registers that define the
currently activeloop (LCn, LTn, or LBn). User modifications to those registers while the hardware
accesses them produces undefined execution. Software can legally modify the loop counter at any
other location in the loop.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

Thisinstruction cannot be issued in parallel with other instructions.

Blackfin DSP Instruction Set Reference 2-13

Program Flow Control

259

2.5.10

2511

2-14

Example

Isetup (4,4) IcO;

Isetup (poll_bit, end_poll_bit) IcO;

Isetup (4,6)Icl;

Isetup (FIR_filter, bottom_of FIR_filter) Ic1;
Isetup (4,8) IcO=p1;

Isetup (4, 8) IcO=pl>>1;

loop DoltSome LCO ;

loop_begin DoltSome ;

loop_end DoltSome ;

loop MyLoop LC1;

loop_begin MyLoop ;
loop_end MyL oop ;

Also See

Conditional Jump, Jump

Special Applications

Blﬂl.’l(/r@&

[* define loop ‘ DoltSome' with Loop
Counter 0 */

/* place before the first instruction in the
loop */

/* place after the last instruction in the
loop */

[* define loop ‘MyLoop’ with Loop
Counter 1 */

/* place before the first instruction in the
loop */

/* place after the last instruction in the
loop */

Blackfin DSP Instruction Set Reference

LOAD / STORE 3

Instruction Summary

This chapter discusses the load / store instructions. Users can take advantage of these instructions
to load and store immediate values, pointer registers, data registers or data register halves, and half-
words (zero- or sign-extended).

31 LOAd IMMEIALE ...veueevieeeiieeeeree e 3-2
3.2 Load POINtEr REJISIENoviieieeeieeeeerie ettt e s 34
RGN oo DL -1 m = o1 (= ST 3-6
3.4 Load Half-Word — Zero-EXtendedcocoeverrenreieneiieeseeesenes s 3-9
3.5 Load Half-Word — Sign-Extendedccccooevveiveeiininne e 312
3.6 Load High DataRegister Halfcoiiiiiiiiiieee e 315
3.7 Load Low DataRegister Half ... 3-18
3.8 Load Byte—Zero-Extended ... 321
3.9 Load Byte— SIgn-EXtENdedcoovviiieiie e 323
3.10 Store POINtEr REGISIENcvceeeeeeeeieieiisie et s sr e seenen 325
311 StOre Data REJISIE ..ocvvcviveeeeceeeteees et 3-27
3.12 Store High Data Register Half ... 3-30
3.13 Store Low Data Register Half ... 333
314 SLOMEBYLE ...ttt e et e eae e 3-36

Blackfin DSP Instruction Set Reference 3-1

Load / Store ”’””"/’@&

3.1

3.1.1

3.1.2

3.1.3

3.1.4

3-2

Load Immediate

General Form

register = constant

Al=A0=0

Syntax

NOT EXTENDED

reg lo=uimml6; [/ 16-bit value into low-half data or address register (b)
reg_hi = uimm16; // 16-bit value into high-half data or address register (b)

ZERO-EXTENDED

reg = uimmi6 (Z) ; /1 16-bit value, zero-extended, into data or address register (b)
A0=0; Il Clear AOQ register (b)

Al1=0; Il Clear Al register (b)

A1=A0=0; // Clear A1 and AO register at once (b)

SIGN-EXTENDED

Dreg =imm7 (X) ; [l 7-bit value, sign extended, into Dreg (a)
Preg = imm7 (X) ; [l 7-hit value, sign extended, into Preg (a)
reg =immi6 (X) ; I/ 16-bit value, sign extended, into data or address register (b)

Syntax Terminology

Dreg: RO, ..., R7
Preg: PO, ..., P5, SP, FP

reg_lo: RO.L, ..., R7.L, POL, ..., P5.L, SPL, FRL, I0L, ..., 13.L, MO.L, .., M3.L, BOL, .., B3.L,
LOL, ..., L3L

reg_hi: RO.H, ..., R7.H, POH, ..., P5.H, SPH, FPH, IO.H, ..., I3.H, MO.H, ..., M3.H, BO.H, ...,
B3.H,LO.H, ..., L3.H

reg: RO, ..., R7, PO, ..., P5PO, ..., P5, SP, FR, 10, ..., 13, MO, ..., M3, BO, ..., B3, LO, ..., L3
imm?7: 7-bit signed field, with arange of -64 through 63

imm16: 16-bit signed field, with arange of -32,768 through 32,767 (0x800 through Ox7FFF)
uimm16: 16-bit unsigned field, with arange of 0 through 65,535 (0x0000 through OXFFFF)

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length. Comment (b) identifies 32-bit
instruction length.

Blackfin DSP Instruction Set Reference

Bma/(/?@

3.1.5

3.1.6
3.1.7
3.1.8

3.1.9

3.1.10

3.1.11

Load / Store

Functional Description

The Load Immediate instruction loads immediate values, or explicit constants, into registers.

Theinstruction loads a 7-bit or 16-bit quantity, depending on the size of the immediate data. The
range of constants that can be loaded is 0x8000 through Ox7FFF, equivalent to —32768 through
+32767.

The only values that can be immediately loaded into 40-bit Accumulator registers are zeroes.

Sixteen-bit half-words can be loaded into either the high half or low half of aregister. The load
operation |eaves the unspecified half of the register intact.

The zero-extended versions fill the upper bits of the destination register with zeros. The sign-
extended versions fill the upper bits with the sign of the constant value.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

Thisinstruction cannot be issued in parallel with other instructions.

Example

r7=63(2);
p3=12(2);
ro=-344 (x) ;
r7=436(2) ;

m2 = 0x89ab (2) ;
pl=0x1234(2) ;
m3 = 0x3456 (X) ;
13.h = Oxbcde ;
a0=0;

al=0;
al=a0=0;

Also See

Load Data Register, Load Pointer Register

Special Applications

Use the Load Immediate instruction to initialize registers.

Blackfin DSP Instruction Set Reference 3-3

Load / Store ”’””"/’@&

3.2

3.2.1

3.2.2

3.2.3

3.2.4

3.2.5

3.2.6

Load Pointer Register

General Form

P-register = [indirect_address |

Syntax

Preg=[Preg] ; // indirect (a)
Preg=[Preg++]; I/ indirect, post-increment (a)
Preg=[Preg--]; Il indirect, post-decrement (a)
Preg =[Preg + uimmém4] ; I indexed with small offset (a)
Preg = [Preg + uimm17m4]; Il indexed with large offset (b)
Preg =[Preg - uimml7m4]; Il indexed with large offset (b)
Preg = [FP - uimm7m4] ; Il indexed FP-relative (a)

Syntax Terminology

Preg: PO, ..., P5, SP, FP
uimmémd4: 6-bit unsigned field that must be a multiple of 4, with arange of 0 through 60 bytes
uimm7md4: 7-bit unsigned field that must be a multiple of 4, with arange of 4 through 128 bytes

uimml7md4; 17-bit unsigned field that must be a multiple of 4, with arange of 0 through 131,068
bytes (0x0000 0000 through 0x0001 FFFC)

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length. Comment (b) identifies 32-bit
instruction length.

Functional Description

The Load Pointer Register instruction loads a 32-hit P-register with a 32-bit word from an address
specified by a P-register.

Theindirect address and offset must yield an even multiple of 4 to maintain 4-byte word address
alignment. Failure to maintain proper alignment causes an misaligned memory access exception.
Options

The Load Pointer Register instruction supports the following options:
¢ Post-increment the source pointer by 4 bytes

* Post-decrement the source pointer by 4 bytes

Blackfin DSP Instruction Set Reference

Bma/(/?@

3.2.7

3.2.8

3.2.9

3.2.10

3.2.11

3.2.12

Load / Store

¢ Offset the source pointer with asmall (6-bit), word-aligned (multiple of 4), unsigned constant.
¢ Offset the source pointer with alarge (18-bit), word-aligned (multiple of 4), signed constant.

* Frame Pointer (FP) relative and offset with a 7-bit, word-aligned (multiple of 4), negative
constant.

Theindexed FP-relative form istypically used to accesslocal variablesin a subroutine or function.
Positive offsets relative to FP (such asis useful to access arguments from a called function) can be
accomplished using one of the other versions of this instruction. Preg includes the Frame Pointer
and Stack Pointer.

Auto-increment or auto-decrement pointer registers cannot also be the destination of a Load
instruction. For example, sp=[sp++] isnot avalid instruction because it prescribes two competing
values for the Stack Pointer -- (a) the data returned from memory and (b) post-incremented SP++.

Similarly, PO=[PO++] and P1=[P1++], etc. are invalid. Such an instruction causes an undefined
instruction exception.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The 16-bit versions of thisinstruction can beissued in parallel with specific other instructions. For
details, see Chapter 15, “Issuing Parallel Instructions.”

The 32-bit versions of thisinstruction cannot be issued in parallel with other instructions.

Example

p3=[p2];
pS=[p0++];
p2=[sp--];
p3=[p2+8];

p0 = p2 + 0x4008] ;
pl=[fp-16];

Also See

Load Immediate, Pop, Pop Multiple

Special Applications

Blackfin DSP Instruction Set Reference 3-5

Load / Store

3.3

3.3.1

3.3.2

3.3.3

3.3.4

Load Data Register

General Form

D-register = [indirect_address]

Syntax

Dreg =[Preg] ;

Dreg=[Preg++] ;

Dreg=[Preg--] ;

Dreg = [Preg + uimmém4] ;
Dreg =[Preg + uimm17m4] ;
Dreg =[Preg - uimm17m4] ;
Dreg =[Preg ++ Preg] ;
Dreg=[FP-uimm7m4] ;
Dreg=[Ireg];

Dreg =[lreg++] ;
Dreg=[Ireg--];
Dreg=[lreg ++ Mreg] ;

Syntax Terminology

Dreg: RO, ..., R7
Preg: PO, ..., P5, SP, FP
Ireg: 10, ..., 13

Mreg: MO, ..., M3

Blﬂl.’l(/r@&

[/l indirect (a)

/l indirect, post-increment (a)

[l indirect, post-decrement (@)

I indexed with small offset (&)

I/ indexed with large offset (b)

/I indexed with large offset (b)

/1 indirect, post-increment index * (a)
Il indexed FP-relative (a)

[l indirect (a)

[indirect, post-increment (a)

I/ indirect, post-decrement (@)

/I indirect, post-increment index 1 €)

uimmeémd4: 6-bit unsigned field that must be a multiple of 4, with arange of 0 through 60 bytes

uimm7md4: 7-bit unsigned field that must be a multiple of 4, with arange of 4 through 128 bytes
uimml7m4: 17-bit unsigned field that must be a multiple of 4, with arange of 0 through 131,068

bytes (0x0000 0000 through 0x0001 FFFC)

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length. Comment (b) identifies 32-bit

instruction length.

1. See “Indirect and Post-Increment Index Addressing” on page 3-7.

3-6

Blackfin DSP Instruction Set Reference

mg,(/% Load / Store

3.3.5 Functional Description

The Load Data Register instruction loads a 32-bit word into a 32-bit D-register from a memory
location. The source pointer register can be a P-register, |-register, or the Frame Pointer.

Theindirect address and offset must yield an even multiple of 4 to maintain 4-byte word address
alignment. Failure to maintain proper alignment causes an misaligned memory access exception.

3.3.6 Options

The Load Data Register instruction supports the following options:
¢ Post-increment the source pointer by 4 bytes to maintain word alignment
¢ Post-decrement the source pointer by 4 bytes to maintain word alignment
¢ Offset the source pointer with asmall (6-bit), word-aligned (multiple of 4), unsigned constant.
¢ Offset the source pointer with alarge (18-bit), word-aligned (multiple of 4), signed constant.

* Frame Pointer (FP) relative and offset with a 7-bit, word-aligned (multiple of 4), negative
constant.

Theindexed FP-relative form istypically used to accesslocal variablesin a subroutine or function.
Positive offsets relative to FP (such asis useful to access arguments from a called function) can be
accomplished using one of the other versions of this instruction. Preg includes the Frame Pointer
and Stack Pointer.

3.3.7 Indirect and Post-Increment Index Addressing

The syntax of the form Dest =[Src_1 ++ Src_2] isindirect and post-increment index addressing.
The form is shorthand for the following sequence:

Dest=[Src_1] ; /I load the 32-bit destination, indirect
Src 1+=Src 2; /I post-increment Src_1 by a quantity; indexed by Src 2
where:

* Dest isthe destination register (Dreg in the syntax example).
* Src_1listhefirst source register on the right-hand side of the equation.
* Src_2isthe second source register.

Indirect and post-increment index addressing supports customized indirect address cadence. The
indirect, post-increment index version must have separate P-registers for the input operands. If a
common Preg is used for the inputs, the auto-increment feature does not work.

3.3.8 Flags Affected

None

3.3.9 Required Mode

User & Supervisor

Blackfin DSP Instruction Set Reference 3-7

Load / Store

3.3.10

3.3.11

3.3.12

3.3.13

Parallel Issue

Blﬂl.’l(/r@&

The 16-bit versions of thisinstruction can beissued in parallel with specific other instructions. For
details, see Chapter 15, “Issuing Parallel Instructions.”

The 32-bit versions of this instruction cannot be issued in parallel with other instructions.

Example

r3=[p0];
r7=[pl++];
r2=[sp--1;
re=[p2+12];
rO=[p4+0x800C] ;
rl=[p0++pl];
r5=[fp-12];
r2=[i2];
ro=[i0++];
ro=[i0--1;
r7=0;

i3 = 0x4000;

m0=4;
r7=[i3++mQ] ;

Also See

Load Immediate

Special Applications

// Before indirect post-increment indexed addressing
/[l Memory location contains 15, for example.

Il Afterwards. . .

I/ r7 = 15 from memory location 0x4000

/i3 =13 + m0 = 0x4004
// mO still equals 4

Blackfin DSP Instruction Set Reference

Bma/(/?@

3.4

3.4.1

3.4.2

3.4.3

3.4.4

3.4.5

Load / Store

Load Half-Word — Zero-Extended

General Form

D-register = W [indirect_address] (2)

Syntax

Dreg=W|[Preg] (2); /I indirect (a)

Dreg=W [Preg ++] (2); /' indirect, post-increment (a)
Dreg=W [Preg--] (2); /I indirect, post-decrement (a)

Dreg =W [Preg + uimmbm2] (2); /l indexed with small offset (a)

Dreg =W [Preg + uimm16m2] (2); /I indexed with large offset (b)

Dreg =W [Preg - uimmlém2] (2); /I indexed with large offset (b)

Dreg =W [Preg ++ Preg] (2); /1 indirect, post-increment index 2 (a)

Syntax Terminology

Dreg: RO, ..., R7
Preg: PO, ..., P5, SP, FP
uimm5m2: 5-bit unsigned field that must be a multiple of 2, with arange of 0 through 30 bytes

uimm16mz2: 16-bit unsigned field that must be a multiple of 2, with arange of 0 through 65,534
bytes (0x0000 through OxFFFC)

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length. Comment (b) identifies 32-bit
instruction length.

Functional Description

The Load Half-Word — Zero-Extended instruction loads 16 bits from a memory location into the
lower half of a 32-bit data register. The instruction zero-extends the upper half of theregister. The
pointer register is a P-register.

Theindirect address and offset must yield an even numbered address to maintain 2-byte half-word
address alignment. Failure to maintain proper alignment causes an misaligned memory access
exception.

2. See “Indirect and Post-Increment Index Addressing” on page 3-10.

Blackfin DSP Instruction Set Reference 3-9

Load / Store ”’””"/’@&

3.4.6

3.4.7

3.4.8

3.4.9

3.4.10

3-10

Options

The Load Half-Word — Zero-Extended instruction supports the following options:
¢ Post-increment the source pointer by 2 bytes
* Post-decrement the source pointer by 2 bytes
¢ Offset the source pointer with asmall (5-bit), half-word-aligned (even), unsigned constant.
¢ Offset the source pointer with alarge (17-hit), half-word-aligned (even), signed constant.

Indirect and Post-Increment Index Addressing

The syntax of the form Dest =W [Src_1 ++ Src_2] isindirect and post-increment index
addressing. The form is shorthand for the following sequence:

Dest=[Src 1] ; [/ load the 32-bit destination, indirect
Src 1+=Src 2; Il post-increment Src_1 by a quantity; indexed by Src 2

where:
* Dest isthe destination register (Dreg in the syntax example).
* Src_listhefirst source register on the right-hand side of the equation.
* Src 2isthe second source register.

Indirect and post-increment index addressing supports customized indirect address cadence. The
indirect, post-increment index version must have separate P-registers for the input operands. If a
common Preg is used for the inputs, the instruction functions as a simple, non-incrementing load.
For example, r0 = W[p2++p2](z) functions asr0 = W[p2](2).

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The 16-bit versions of thisinstruction can beissued in parallel with specific other instructions. For
details, see Chapter 15, “Issuing Parallel Instructions.”

The 32-bit versions of this instruction cannot be issued in parallel with other instructions.

Blackfin DSP Instruction Set Reference

Bma/(/?@

3.4.11

3.4.12

3.4.13

Load / Store

Example

r3=w/[p0](2);
r7=wl[pl++](2);
r2=wlsp--](2);
re=wl[p2+12] (2);
rO=w [p4 + 0x8004] (2);
ri=w[p0++pl](2);

Also See

Load Half-Word Sign-Extended, Load Low Data Register Half, Load High Data Register Half,
Load Data Register

Special Applications

To read consecutive, aligned 16-bit values for high-performance DSP operations, use the L oad
Data Register instructions instead of these half-word instructions. The half-word load instructions
use only half the available 32-bit data bus bandwidth, possibly imposing a bottleneck constriction
in the data flow rate.

Blackfin DSP Instruction Set Reference 3-11

Load / Store ”’””"/’@&

3.5

3.5.1

3.5.2

3.5.3

3.5.4

3.5.5

Load Half-Word — Sign-Extended

General Form

D-register =W [indirect_address |

Syntax

Dreg=W [Preg] (X); [/ indirect (a)

Dreg =W [Preg ++] (X); [l indirect, post-increment (a)
Dreg=W [Preg --] (X); I indirect, post-decrement (@)

Dreg = W [Preg + uimmsm2] (X); I/ indexed with small offset (a)

Dreg =W [Preg + uimm16m2] (X); I/ indexed with large offset (b)

Dreg = W [Preg - uimm16m2] (X); Il indexed with large offset (b)

Dreg =W [Preg ++ Preg] (X); /1 indirect, post-increment index 2 (a)

Syntax Terminology

Dreg: RO, ..., R7
Preg: PO, ..., P5, SP, FP
uimm5m2: 5-bit unsigned field that must be a multiple of 2, with arange of 0 through 30 bytes

uimm16m?2: 16-bit unsigned field that must be a multiple of 2, with arange of -0 through 65,534
bytes (0x0000 through OxFFFE)

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length. Comment (b) identifies 32-bit
instruction length.

Functional Description

The Load Half-Word — Sign-Extended instruction loads 16 bits sign-extended from a memory
location into a 32-bit dataregister. The pointer register is a P-register. The MSB of the number
loaded is replicated in the whole upper-half word of the destination D-register.

Theindirect address and offset must yield an even numbered address to maintain 2-byte half-word
address alignment. Failure to maintain proper alignment causes an misaligned memory access
exception.

3. See“Indirect and Post-Increment Index Addressing” on page 3-13.

3-12

Blackfin DSP Instruction Set Reference

Bma/(/?@

3.5.6

3.5.7

3.5.8
3.5.9

3.5.10

Load / Store

Options

Optionaly, (X) can be included in the instruction syntax to make it clearer that the load is sign
extended. This optional flag does not affect the instruction encoding, function, or performance.

The Load Half-Word — Sign-Extended instruction supports the following options:
¢ Post-increment the source pointer by 2 bytes
¢ Post-decrement the source pointer by 2 bytes
* Offset the source pointer with asmall (5-bit), half-word-aligned (even), unsigned constant.
* Offset the source pointer with alarge (17-bit), half-word-aligned (even), signed constant.

Indirect and Post-Increment Index Addressing

The syntax of the form Dest = W [Src_1 ++ Src_2] (X) isindirect and post-increment index
addressing. The form is shorthand for the following sequence:

Dest=[Src 1] ; /I load the 32-hit destination, indirect.
Sc 1+=Src 2; /I post-increment Src_1 by a quantity indexed by Src_2.
where:

* Dest isthe destination register (Dreg in the syntax example).
* Src_1isthefirst source register on the right-hand side of the equation.

* Src_2isthe second source register.

Indirect and post-increment index addressing supports customized indirect address cadence. The
indirect, post-increment index version must have separate P-registers for the input operands. If a
common Preg is used for the inputs, the instruction functions as a simple, non-incrementing load.
For example, r0 = W[p2++p2] functions asr0 = W[p2].

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The 16-bit versions of thisinstruction can beissued in parallel with specific other instructions. For
details, see Chapter 15, “Issuing Parallel Instructions.”

The 32-bit versions of thisinstruction cannot be issued in parallel with other instructions.

Blackfin DSP Instruction Set Reference 3-13

Load / Store ”’””"/’@&

3.5.11

3.5.12

3.5.13

3-14

Example

r3=w/[p0] (x);
r7=wlpl++](x);
r2=w/sp--](x);
re=wlp2+12] (x);
rO=w [p4 + Ox800E] (x);
ri=w[po++pl] (x);

Also See

Load Half-Word — Zero Extended, Load Low Data Register Half, Load High Data Register Half

Special Applications

To read consecutive, aligned 16-bit values for high-performance DSP operations, use the Load
Data Register instructions instead of these half-word instructions. The half-word load instructions
use only half the available 32-bit data bus bandwidth, possibly imposing a bottleneck constriction
in the data flow rate.

Blackfin DSP Instruction Set Reference

Bma/(/?@

3.6

3.6.1

3.6.2

3.6.3

3.6.4

3.6.5

3.6.6

Load / Store

Load High Data Register Half

General Form

Dreg_hi =W [indirect_address]

Syntax

Dreg hi=W [lreg]; /[indirect (DAG) (a)

Dreg_hi =W [Ireg ++] ; /I indirect, post-increment (DAG) (a)
Dreg_hi=W [lIreg--1; /l indirect, post-decrement (DAG) (@)
Dreg_ hi =W [Preg]; /I indirect (a)

Dreg_hi =W [Preg ++ Preg] ; // indirect, post-increment index # (a)

Syntax Terminology

Dreg_hi: the most significant 16 bits of registers RO, ..., R7
Preg: PO, ..., P5, SP, FP
Ireg: 10, ..., 13

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

The Load High Data Register Half instruction loads 16 bits from a memory location indicated by
an |-register or a P-register into the most significant half of a 32-bit data register. The operation
does not affect the least significant half.

Theindirect address and offset must yield an even numbered address to maintain 2-byte half-word
address alignment. Failure to maintain proper alignment causes an misaligned memory access
exception.

Options

The Load High Data Register Half instruction supports the following options:
* Post-increment the source pointer I-register by 2 bytes to maintain half-word alignment

¢ Post-decrement the source pointer |-register by 2 bytes to maintain half-word alignment

4. See“Indirect and Post-Increment Index Addressing” on page 3-16.

Blackfin DSP Instruction Set Reference 3-15

Load / Store ”’””"/’@&

3.6.7

3.6.8

3.6.9

3.6.10

3.6.11

3.6.12

3-16

Indirect and Post-Increment Index Addressing

The syntax of theform Dst_hi =[Src_1 ++ Src_2] isindirect and post-increment index
addressing. The form is shorthand for the following sequence:

Dst hi=[Src 1] ; * load the half-word into the upper half of the destination
register, indirect */
Src 1+=Src 2; Il post-increment Src_1 by a quantity indexed by Src 2
where:

e Dst_hi isthe most significant half of the destination register. (Dreg_hi in the syntax example).
* Src_1isthe memory source pointer register on the right-hand side of the syntax.

* Src_2istheincrement pointer register.

Indirect and post-increment index addressing supports customized indirect address cadence. The

indirect, post-increment index version must have separate P-registers for the input operands. If a

common Preg is used for the inputs, the instruction functions as a simple, non-incrementing load.
For example, r0.h = W[p2++p2] functions as r0.h = W[p2].

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The 16-bit versions of thisinstruction can beissued in parallel with specific other instructions. For
details, see Chapter 15, “Issuing Parallel Instructions.”

Example

r3h=wlil];
rfh=wli3++];
rth=wl[iO--];
r2h=w[p4];
rS.h=w[p2++p0];

Also See

Load Low Data Register Half, Load Half-Word — Zero-Extended, L oad Half-Word — Sign-
Extended

Blackfin DSP Instruction Set Reference

mg,(/% Load / Store

3.6.13 Special Applications

To read consecutive, aligned 16-bit values for high-performance DSP operations, use the Load
Data Register instructions instead of these half-word instructions. The half-word load instructions
use only half the available 32-bit data bus bandwidth, possibly imposing a bottleneck constriction
in the data flow rate.

Blackfin DSP Instruction Set Reference 3-17

Load / Store ”’””"/’@&

3.7

3.7.1

3.7.2

3.7.3

3.7.4

3.7.5

3.7.6

Load Low Data Register Half

General Form

Dreg_lo=W [indirect_address]

Syntax

Dreg lo=W [Ireg]; / indirect (DAG) (a)

Dreg lo=W [Ireg ++] ; [l indirect, post-increment (DAG) (a)
Dreg_ lo=W] Ireg--1; [indirect, post-decrement (DAG) (@)
Dreg lo=W][Preg]; [l indirect (a)

Dreg_lo=W| Preg ++ Preg] ; // indirect, post-increment index ° (a)

Syntax Terminology

Dreg_lo: theleast significant 16 bits of registers RO, ..., R7
Preg: PO, ..., P5, SP, FP
Ireg: 10, ..., 13

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

The Load Low Data Register Half instruction loads 16 bits from amemory location indicated by an
|-register or a P-register into the least significant half of a 32-bit dataregister. The operation does
not affect the most significant half of the data register.

Theindirect address and offset must yield an even numbered address to maintain 2-byte half-word
address alignment. Failure to maintain proper alignment causes an misaligned memory access
exception.

Options

The Load Low Data Register Half instruction supports the following options:
* Post-increment the source pointer I-register by 2 bytes

* Post-decrement the source pointer |-register by 2 bytes

5. See“Indirect and Post-Increment Index Addressing” on page 3-19.

3-18

Blackfin DSP Instruction Set Reference

Bma/(/?@

3.7.7

3.7.8
3.7.9
3.7.10

3.7.11

3.7.12

Load / Store

Indirect and Post-Increment Index Addressing

The syntax of theform Dst_lo=[Src_1 ++ Src_2] isindirect and post-increment index
addressing. The form is shorthand for the following sequence:

Dst lo=[Src 1] ; /* load the half-word into the lower half of the destination
register, indirect */
Src 1+=Src 2; /I post-increment Src_1 by a quantity indexed by Src 2
where;

* Dst_loistheleast significant half of the destination register (Dreg_lo in the syntax example).
* Src_1isthe memory source pointer register on the right side of the syntax.

* Src_2istheincrement index register.

Indirect and post-increment index addressing supports customized indirect address cadence. The
indirect, post-increment index version must have separate P-registers for the input operands. If a
common Preg is used for the inputs, the instruction functions as a simple, non-incrementing load.
For example, r0.l = W[p2++p2] functions asr0.l = W[p2].

Flags Affected

None

Required Mode

User & Supervisor

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Parallel Issue

The 16-bit versions of thisinstruction can beissued in parallel with specific other instructions. For
details, see Chapter 15, “Issuing Parallel Instructions.”

Example
r3l=wlil];
r7l=w[i3++];
ril=w[i0O--];
r2l=w[p4];

r5.l=w[p2++p0];

Blackfin DSP Instruction Set Reference 3-19

Load / Store ”’””"/’@&

3.7.13

3.7.14

3-20

Also See

Load High Data Register Half, Load Half-Word — Zero-Extended, L oad Half-Word — Sign-
Extended

Special Applications

To read consecutive, aligned 16-bit values for high-performance DSP operations, use the Load
Data Register instructions instead of these half-word instructions. The half-word load instructions
use only half of the avail able 32-bit data bus bandwidth, possibly imposing a bottleneck
congtriction in the data flow rate.

Blackfin DSP Instruction Set Reference

Bma/(/?@

3.8

3.8.1

3.8.2

3.8.3

3.8.4

3.8.5

3.8.6

3.8.7

Load / Store

Load Byte — Zero-Extended

General Form

D-register = B [indirect_address] (Z2)

Syntax

Dreg=B|[Preg] (2); /I indirect (a)

Dreg=B [Preg ++] (2); /' indirect, post-increment (a)
Dreg=B|[Preg--1 (2); /l indirect, post-decrement (a)
Dreg =B [Preg + uimmi5] (2); /I indexed with offset (b)
Dreg =B [Preg - uimm15] (2); /I indexed with offset (b)

Syntax Terminology

Dreg: RO, ..., R7
Preg: PO, ..., P5, SP, FP
uimm15: 15-bit unsigned field, with arange of 0 through 32,767 bytes (0x0000 through Ox7FFF)

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length. Comment (b) identifies 32-bit
instruction length.

Functional Description
The Load Byte — Zero-Extended instruction loads an 8-bit byte, zero-extended to 32 bits indicated

by an I-register or a P-register, from a memory location into a 32-bit data register. Fill the D-
register bits 31:8 with zeros.

Theindirect address and offset have no restrictions for memory address alignment.

Options

The Load Byte — Zero-Extended instruction supports the following options:
* Post-increment the source pointer by 1 byte
* Post-decrement the source pointer by 1 byte
¢ Offset the source pointer with a 16-bit signed constant.

Flags Affected

None

Blackfin DSP Instruction Set Reference 3-21

Load / Store ”’””"/’@&

3.8.8 Required Mode

User & Supervisor

3.8.9 Parallel Issue

The 16-bit versions of thisinstruction can beissued in parallel with specific other instructions. For
details, see Chapter 15, “Issuing Parallel Instructions.”

The 32-bit versions of this instruction cannot be issued in parallel with other instructions.

3.8.10 Example

r3=b[p0] (2);
r7=b[pl++](2);
r2=b[sp--](2);

rO=b[p4 + OXFFFF800F] (2);

3.8.11 Also See

L oad Byte — Sign-Extended

3.8.12 Special Applications

3-22 Blackfin DSP Instruction Set Reference

Bma/(/?@

3.9

3.9.1

3.9.2

3.9.3

3.9.4

3.95

3.9.6

Load / Store

Load Byte — Sign-Extended

General Form

D-register =B [indirect_address]

Syntax

Dreg=B|[Preg] (X); /I indirect (a)

Dreg =B [Preg ++] (X); /' indirect, post-increment (a)
Dreg=B [Preg--]1 (X); /l indirect, post-decrement (a)
Dreg=B [Preg + uimmi5] (X) ; /I indexed with offset (b)
Dreg=B [Preg - uimm15] (X) ; /I indexed with offset (b)

Syntax Terminology

Dreg: RO, ..., R7
Preg: PO, ..., P5, SP, FP
uimm15: 15-bit unsigned field, with arange of 0 through 32,767 bytes (0x0000 through Ox7FFF)

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length. Comment (b) identifies 32-bit
instruction length.

Functional Description

The Load Byte — Sign-Extended instruction loads an 8-bit byte, sign-extended to 32 bits, from a
memory location indicated by a P-register into a 32-bit data register. The pointer register isa P-
register. Fill the D-register bits 31:8 with the most significant bit of the loaded byte.

Theindirect address and offset have no restrictions for memory address alignment.

Options

Optionaly, (X) can be included in the instruction syntax to make it clearer that the load is sign
extended. This optional flag does not affect the instruction encoding, function, or performance.

The Load Byte — Sign-Extended instruction supports the following options:
¢ Post-increment the source pointer by 1 byte
* Post-decrement the source pointer by 1 byte
¢ Offset the source pointer with a 16-bit signed constant.

Blackfin DSP Instruction Set Reference 3-23

Load / Store ”’””"/’@&

3.9.7 Flags Affected

None

3.9.8 Required Mode

User & Supervisor

3.99 Parallel Issue

The 16-bit versions of thisinstruction can beissued in parallel with specific other instructions. For
details, see Chapter 15, “Issuing Parallel Instructions.”

The 32-bit versions of this instruction cannot be issued in parallel with other instructions.

3.9.10 Example

r3=b[pO] (x);
r7=b[pl++](x);

r2=b[sp--](x);
rO=Db[p4 + OxFFFF800F](X) ;

3.9.11 Also See

L oad Byte — Zero-Extended

3.9.12 Special Applications

3-24 Blackfin DSP Instruction Set Reference

Bma/(/?@

3.10

3.10.1

3.10.2

3.10.3

3.10.4

3.10.5

3.10.6

Load / Store

Store Pointer Register

General Form

[indirect_address] = P-register

Syntax

[Preg] =Preg; /I indirect (a)

[Preg ++]=Preg; /' indirect, post-increment (a)
[Preg--]1=Preg; /I indirect, post-decrement (a)
[Preg + uimmém4] = Preg ; /I indexed with small offset (a)
[Preg + uimml17m4] = Preg ; /I indexed with large offset (b)
[Preg - uimm17m4] =Preg; /I indexed with large offset (b)
[FP-uimm7m4] = Preg; /I indexed FP-relative (a)

Syntax Terminology

Preg: PO, ..., P5, SP, FP
uimmeém4: 6-bit unsigned field that must be a multiple of 4, with arange of 0 through 60 bytes
uimm7md4: 7-bit unsigned field that must be a multiple of 4, with arange of 4 through 128 bytes

uimml17md4: 17-bit unsigned field that must be a multiple of 4, with arange of 0 through 131,068
bytes (0x000 0000 through 0x0001 FFFC)

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length. Comment (b) identifies 32-bit
instruction length.

Functional Description

The Store Pointer Register instruction stores the contents of a 32-bit P-register to a 32-bit memory
location. The pointer register is a P-register.

Theindirect address and offset must yield an even multiple of 4 to maintain 4-byte word address
alignment. Failure to maintain proper alignment causes an misaligned memory access exception.
Options

The Store Pointer Register instruction supports the following options:
* Post-increment the destination pointer by 4 bytes
¢ Post-decrement the destination pointer by 4 bytes

Blackfin DSP Instruction Set Reference 3-25

Load / Store ”’””"/’@&

3.10.7

3.10.8

3.10.9

3.10.10

3.10.11

3.10.12

3-26

¢ Offset the source pointer with a small (6-bit), word-aligned (multiple of 4), unsigned constant.
¢ Offset the source pointer with alarge (18-bit), word-aligned (multiple of 4), signed constant.

* Frame Pointer (FP) relative and offset with a 7-bit, word-aligned (multiple of 4), negative
constant.

The indexed FP-relative form istypically used to accesslocal variablesin a subroutine or function.
Positive offsets relative to FP (such asis useful to access arguments from a called function) can be
accomplished using one of the other versions of this instruction. Preg includes the Frame Pointer
and Stack Pointer.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The 16-bit versions of thisinstruction can beissued in parallel with specific other instructions. For
details, see Chapter 15, “Issuing Parallel Instructions.”

The 32-bit versions of this instruction cannot be issued in parallel with other instructions.

Example
[p2] =p3;
[sp++] =p5;
[pO--] =p2;
[p2+8] =p3;

[p2 + 0x4444]1 =p0;
[fp-12] =p1;

Also See

Push, Push Multiple

Special Applications

Blackfin DSP Instruction Set Reference

Bma/(/?@

3.11

3.11.1

3.11.2

3.11.3

3.11.4

Load / Store

Store Data Register

General Form

[indirect_address] = D-register

Syntax

Using Pointer Registers

[Preg] =Dreg; /I indirect (a)

[Preg ++] = Dreg; /' indirect, post-increment (a)

[Preg--]1=Dreg; /I indirect, post-decrement (a)

[Preg + uimmém4] = Dreg ; /I indexed with small offset (a)

[Preg + uimml17m4] = Dreg; /I indexed with large offset (b)

[Preg - uimm17m4] = Dreg ; /I indexed with large offset (b)

[Preg ++ Preg] = Dreg;; /I indirect, post-increment index © (a)
[FP- uimm7m4] =Dreg; /I indexed FP-relative (a)

Using Data Address Generator (DAG) Registers

[Ireg] =Dreg; Il indirect (a)

[Ireg++] =Dreg; /I indirect, post-increment (a)
[Ireg--] =Dreg; // indirect, post-decrement (a)
[Ireg++ Mreg] =Dreg; // indirect, post-increment index® (a)

Syntax Terminology

Dreg: RO, ..., R7
Preg: PO, ..., P5, SP, FP
Ireg: 10, ..., 13

Mreg: MO, ..., M3
uimmém4: 6-bit unsigned field that must be a multiple of 4, with arange of 0 through 60 bytes
uimm7md4: 7-bit unsigned field that must be a multiple of 4, with arange of 4 through 128 bytes

uimml17md4: 17-bit unsigned field that must be a multiple of 4, with arange of 0 through 131,068
bytes (0x0000 through OxFFFC)

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length. Comment (b) identifies 32-bit
instruction length.

6. See “Indirect and Post-Increment Index Addressing” on page 3-28.

Blackfin DSP Instruction Set Reference 3-27

Load / Store ”’””"/’@&

3.11.5

3.11.6

3.11.7

3.11.8

3.11.9

3-28

Functional Description

The Store Data Register instruction stores the contents of a 32-bit D-register to a 32-bit memory
location. The destination pointer register can be a P-register, |-register, or the Frame Pointer.

Theindirect address and offset must yield an even multiple of 4 to maintain 4-byte word address
alignment. Failure to maintain proper alignment causes an misaligned memory access exception.

Options

The Store Data Register instruction supports the following options:
* Post-increment the destination pointer by 4 bytes
* Post-decrement the destination pointer by 4 bytes
¢ Offset the source pointer with asmall (6-bit), word-aligned (multiple of 4), unsigned constant.
¢ Offset the source pointer with alarge (18-bit), word-aligned (multiple of 4), signed constant.

* Frame Pointer (FP) relative and offset with a 7-bit, word-aligned (multiple of 4), negative
constant.

Theindexed FP-relative form is typically used to accesslocal variablesin a subroutine or function.
Positive offsets relative to FP (such asis useful to access arguments from a called function) can be
accomplished using one of the other versions of this instruction. Preg includes the Frame Pointer
and Stack Pointer.

Indirect and Post-Increment Index Addressing

The syntax of theform [Dst_1 ++ Dst_2] = Srcisindirect and post-increment index addressing.
The form is shorthand for the following sequence:

[Dst 1]=Src; [/ 1oad the 32-bit source, indirect
Dst 1+=Dst 2; Il post-increment Dst_1 by a quantity indexed by Dst_2
where:

¢ Srcisthe sourceregister (Dreg in the syntax example).
* Dst_1isthe memory destination register on the left side of the equation.
¢ Dst_2istheincrement index register.

Indirect and post-increment index addressing supports customized indirect address cadence. The
indirect, post-increment index version must have separate P-registers for the input operands. If a
common Preg is used for the inputs, the auto-increment feature does not work.

Flags Affected

None

Required Mode

User & Supervisor

Blackfin DSP Instruction Set Reference

Bma/(/?@

3.11.10

3.11.11

3.11.12

3.11.13

Parallel Issue

Load / Store

The 16-bit versions of thisinstruction can beissued in parallel with specific other instructions. For

details, see Chapter 15, “Issuing Parallel Instructions.”

The 32-bit versions of thisinstruction cannot be issued in parallel with other instructions.

Example

[pO] =r3;
[pl++] =17;
[sp--] =r2;
[p2+12] =r6;
[p4-0x1004] =10;
[PO++pl] =rl;
[fp-28] =15;
[i2] =r2;
[i0++] =r0;
[i0--] =10;
[i3++mO0] =17;

Also See

Load Immediate

Special Applications

Blackfin DSP Instruction Set Reference

3-29

Load / Store ”’””"/’@&

3.12 Store High Data Register Half

3.12.1 General Form

W [indirect_address] = Dreg_hi

3.12.2 Syntax

W [Ireg] = Dreg_hi; [/l indirect (DAG) (a)

W [lreg++] =Dreg_hi; I indirect, post-increment (DAG) (@)
W lreg--] =Dreg_hi; Il indirect, post-decrement (DAG) (@)
W [Preg] =Dreg hi; Il indirect (a)

W [Preg ++ Preg] = Dreg_hi ; // indirect, post-increment index ’ (a)

3.12.3 Syntax Terminology

Dreg_hi: the most significant 16 bits of registers RO, ..., R7
Preg: PO, ..., P5, SP, FP
Ireg: 10, ..., 13

3.12.4 Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

3.12.5 Functional Description

The Store High Data Register Half instruction stores the most significant 16 bits of a 32-bit data
register to a 16-bit memory location. The pointer register is either an |-register or a P-register.

Theindirect address and offset must yield an even number to maintain 2-byte half-word address
alignment. Failure to maintain proper alignment causes an misaligned memory access exception.

3.12.6 Options

The Store High Data Register Half instruction supports the following options:
* Post-increment the destination pointer |-register by 2 bytes
* Post-decrement the destination pointer |-register by 2 bytes

7. See“Indirect and Post-Increment Index Addressing” on page 3-31.

3-30 Blackfin DSP Instruction Set Reference

Bma/(/?@

3.12.7

3.12.8
3.12.9

3.12.10

3.12.11

3.12.12

Load / Store

Indirect and Post-Increment Index Addressing

The syntax of theform [Dst_1 ++ Dst 2] = Src_hi isindirect and post-increment index
addressing. The form is shorthand for the following sequence:

[Dst_1] = Src_hi; I/ Store the upper half of the source register, indirect
Dst 1+=Dst 2; I/ Post-increment Dst_1 by a quantity indexed by Dst_2
where:

* Src_hi isthe most significant half of the source register (Dreg_hi in the syntax example).
¢ Dst_1isthe memory destination pointer register on the left side of the syntax.

¢ Dst_2istheincrement index register.

Indirect and post-increment index addressing supports customized indirect address cadence. The
indirect, post-increment index version must have separate P-registers for the input operands. If a
common Preg is used for the inputs, the auto-increment feature does not work.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The 16-bit versions of thisinstruction can beissued in parallel with specific other instructions. For
details, see Chapter 15, “Issuing Parallel Instructions.”

Example

w[il] =r3.h;
w[i3++] =r7.h;
w[i0--] =rl.h;
w[p4] =r2h;

w[p2++p0] =r5.h;

Also See

Store Low Data Register Half

Blackfin DSP Instruction Set Reference 3-31

Load / Store ”’””"/’@&

3.12.13 Special Applications

To write consecutive, aligned 16-bit values for high-performance DSP operations, use the Store
Data Register instructionsinstead of these half-word instructions. The half-word store instructions
use only half the available 32-bit data bus bandwidth, possibly imposing a bottleneck constriction
in the data flow rate.

3-32 Blackfin DSP Instruction Set Reference

Bma/(/?@

3.13

3.13.1

3.13.2

3.13.3

3.13.4

3.13.5

Load / Store

Store Low Data Register Half

General Form

W [indirect_address] = Dreg_lo
W [indirect_address] = D-register

Syntax

W [lreg] =Dreg_lo;

W [lreg++] =Dreg lo;

W Ireg--] =Dreg_lo;

W [Preg] =Dreg lo;

W [Preg] =Dreg;

W [Preg++] =Dreg;

W [Preg--] = Dreg;

W [Preg + uimmbm2] =Dreg;
W [Preg + uimm16m2] = Dreg ;
W [Preg - uimm16m2] = Dreg ;
W [Preg ++ Preg] = Dreg_lo;

Syntax Terminology

[/l indirect (DAG) (a)

[l indirect, post-increment (DAG) (@)
/I indirect, post-decrement (DAG) (a)
/I indirect (a)

/[indirect (a)

/I indirect, post-increment (a)

/I indirect, post-decrement (a)

/I indexed with small offset (a)

/I indexed with large offset (b)

/I indexed with large offset (b)

/I indirect, post-increment index 8)

Dreg_lo: theleast significant 16 bits of registers RO, ..., R7

Preg: PO, ..., P5, SP, FP
Ireg: 10, ..., 13
Dreg: RO, ..., R7

uimmbm2: 5-bit unsigned field that must be a multiple of 2, with arange of 0 through 30 bytes
uimm16mz2: 16-bit unsigned field that must be a multiple of 2, with arange of 0 through 65,534

bytes (0x0000 through OxFFFE)

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length. Comment (b) identifies 32-bit

instruction length.

Functional Description

The Store Low Data Register Half instruction stores the least significant 16 bits of a 32-bit data
register to a 16-bit memory location. The pointer register is either an |-register or a P-register.

8. See“Indirect and Post-Increment Index Addressing” on page 3-34.

Blackfin DSP Instruction Set Reference 3-33

Load / Store ”’””"/’@&

3.13.6

3.13.7

3.13.8

3.13.9

3.13.10

3-34

Theindirect address and offset must yield an even number to maintain 2-byte half-word address
alignment. Failure to maintain proper alignment causes an misaligned memory access exception.

Options

The Store Low Data Register Half instruction supports the following options:
¢ Post-increment the destination pointer by 2 bytes
* Post-decrement the destination pointer by 2 bytes
¢ Offset the source pointer with asmall (5-bit), half-word-aligned (even), unsigned constant.
¢ Offset the source pointer with alarge (17-hit), half-word-aligned (even), signed constant.

Indirect and Post-Increment Index Addressing

The syntax of theform [Dst_1 ++ Dst 2] = Srcisindirect and post-increment index addressing.
The form is shorthand for the following sequence:

[Dst_1] = Src_lo; /I store the lower half of the source register, indirect
Dst 1+=Dst 2; /I post-increment Dst_1 by a quantity indexed by Dst_2
where:

¢ Srcistheleast significant half of the source register (Dreg or Dreg_lo in the syntax example).
* Dst_1isthe memory destination pointer register on the |eft side of the syntax.

e Dst_2istheincrement index register.

Indirect and post-increment index addressing supports customized indirect address cadence. The
indirect, post-increment index version must have separate P-registers for the input operands. If a
common Preg is used for the inputs, the auto-increment feature does not work.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The 16-bit versions of thisinstruction can beissued in parallel with specific other instructions. For
details, see Chapter 15, “Issuing Parallel Instructions.”

The 32-bit versions of this instruction cannot be issued in parallel with other instructions.

Blackfin DSP Instruction Set Reference

mg,(/% Load / Store

3.13.11 Example

wlil] =r3l;
w[p0] =r3;
w[i3++] =r7l;
wl[i0--] =rll;
wlpd] =r2l;
w[pl++] =17;
w[sp--] =r2;

w[p2+12] =r6;
w[p4d-0x200C] =r0;
w[p2++p0] =r51;

3.13.12 Also See

Store High Data Register Half, Store Data Register

3.13.13 Special Applications

To write consecutive, aligned 16-bit values for high-performance DSP operations, use the Store
Data Register instructions instead of these half-word instructions. The half-word store instructions
use only half the available 32-bit data bus bandwidth, possibly imposing a bottleneck constriction
in the data flow rate.

Blackfin DSP Instruction Set Reference 3-35

Load / Store ”’””"/’@&

3.14

3.14.1

3.14.2

3.14.3

3.14.4

3.14.5

3.14.6

3.14.7

3-36

Store Byte

General Form

B [indirect_address] = D-register

Syntax

B[Preg] =Dreg; // indirect (a)

B[Preg++] =Dreg; [indirect, post-increment (a)
B[Preg--]1=Dreg; I/ indirect, post-decrement (@)
B[Preg+uimml5] = Dreg; / indexed with offset (b)

B[Preg - uimm15] = Dreg; / indexed with offset (b)

Syntax Terminology

Dreg: RO, ..., R7

Preg: PO, ..., P5, SP FP

uimm15: 15-bit unsigned field, with arange of 0 through 32,767 bytes (0x0000 through Ox7FFF)
Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length. Comment (b) identifies 32-bit
instruction length.

Functional Description

The Store Byte instruction stores the least significant 8-bit byte of a data register to an 8-bit
memory location. The pointer register is a P-register.

Theindirect address and offset have no restrictions for memory address alignment.

Options

The Store Byte instruction supports the following options:
* Post-increment the destination pointer by 1 byte to maintain byte alignment
* Post-decrement the destination pointer by 1 byte to maintain byte alignment
¢ Offset the destination pointer with a 16-bit signed constant.

Flags Affected

None

Blackfin DSP Instruction Set Reference

Bma/(/?@

3.14.8

3.14.9

3.14.10

3.14.11

3.14.12

Load / Store

Required Mode

User & Supervisor

Parallel Issue

The 16-bit versions of thisinstruction can beissued in parallel with specific other instructions. For
details, see Chapter 15, “Issuing Parallel Instructions.”

The 32-bit versions of this instruction cannot be issued in parallel with other instructions.

Example

b[pO] =r3;
b[pl++] =r7;
b[sp--1 =r2;
b[p4+0x100F] =r0;
b[p4-0x53F] =r0;

Also See

Special Applications

To write consecutive, 8-bit values for high-performance DSP operations, use the Store Data
Register instructions instead of these byte instructions. The byte store instructions use only one
eighth the available 32-bit data bus bandwidth, possibly imposing a bottleneck constriction in the
data flow rate.

Blackfin DSP Instruction Set Reference 3-37

Load / Store ”’””"/’@&

3-38 Blackfin DSP Instruction Set Reference

MOVE 4

Instruction Summary

This chapter discusses the move instructions. Users can take advantage of these instructions to
move registers (or register-halves), half words (zero- or sign-extended), move bytes, and perform
conditional moves.

RV o Vo = o = SO 4-2
4.2 MOVE CONAIIONAooveieeeieceeeresiere s 4-6
4.3 Move Haf-Word — Zero-Extended ... 4-8
4.4 MoveHalf-Word — Sign-Extendedccccoverereeienniecie e 4-10
45 Move RegiSter Half ... e 4-12
4.6 MoveByte—Zero-EXtendedccocooeeveieceeere s 4-17
4.7 MoveByte—Sign-EXtended ..o s 4-19

Blackfin DSP Instruction Set Reference 4-1

Move

4.1

4.1.1

4.1.2

Warning:

4.1.3

4-2

Move Register

General Form

dest reg=src_reg

Syntax

alreg=alreg;

Blﬂl.’l(/r@&

/I (a)

Not all register combinations are allowed. See the Functional Description for details.

AO=A1;

Al=A0;

AO=Dreg;

Al=Dreg;

sysreg = Preg ;

ACCUMULATOR TO D-REGISTER MOVE
Dreg even=A0;

Dreg_odd = A1;

Dreg_even = AO, Dreg_odd = A1 (opt_mode) ;
Dreg_odd = A1, Dreg_even = AO (opt_mode) ;
Dreg even=A0.X;

Dreg_odd=A1X;

Syntax Terminology

Il 40-bit Accumulator (b)

I/ 40-bit Accumulator (b)

Il 32-bit D-register to 32-bit AO.W acc. (b)
I/ 32-bit D-register to 32-bit AL.W acc. (b)
Il 32-bit P-register to sysreg (a)

// move AO to even Dreg (b)

/l move Al to odd Dreg (b)

// move both Accumulatorsto aregister pair (b)
I/l move both Accumulatorsto aregister pair (b)
/* 8-bit A0.X, sign-extended, into 32 bits

of Dreg_even (b) */

/* 8-bit A1.X, sign-extended, into 32 bits

of Dreg_odd (b) */

alreg: RO, ..., R7, PO, ..., P5, SP, FR 10, ..., 13, MO, ..., M3, BO, ..., B3, LO, ..., L3, A0.X, AO.W,
ALX, ALW, ASTAT, RETS, RETI, RETX, RETN, RETE, LCOand LC1, LTOand LT1, LBO and

LB1, EMUDAT, USP, SEQSTAT and SY SCFG
Dreg: RO, ..., R7
Preg: PO, ..., P5, SP, FP

sysreg: ASTAT, SEQSTAT, SYSCFG, RETI, RETX, RETN, RETE, RETS, LCOand LC1, LTO

and LT1, LBO and LB1, and EMUDAT
Dreg_even: RO, R2, R4, R6
Dreg_odd: R1, R3, R5, R7

Blackfin DSP Instruction Set Reference

Bma/(/?@ Move

Note: When combining two moves in the same instruction, the Dreg_even and Dreg_odd operands must
be members of the same register pair, i.e. from the set R1:0, R3:2, R5:4, R7:6.

opt_mode: Optionally (1SS2)

4.1.4 Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length. Comment (b) identifies 32-bit
instruction length.

4.1.5 Functional Description

The Move Register instruction copies the contents of the source register into the destination
register. The operation does not affect the source register contents.

Not all register combinations are allowed. Register moves between the following register groups
are disallowed:

1. sysreg = sysrey,
2. sysreg = Ireg, Mreg, Breg, or Lreg,

3. lreg, Mreg, Breg, or Lreg = sysreg,
4. Preg or USP = sysreg,

where“sysreg” includes ASTAT, SEQSTAT, SY SCFG, RETI, RETX, RETN, RETE, RETS, LCO
and LC1, LTOand LT1, LBO and LB1, and EMUDAT.

Moves from Preg or USP to sysreg are allowed.

The Accumulator Extension registers A0.X and A1.X are only defined for the 8 low-order bits
A0.X[7:0] and A1.X[7:0]. Any move to/from the upper bits A0.X[31:8] or A1.X[31:8] is
undefined.

All moves from smaller to larger registers are sign extended.

4.1.6 Options

The Accumulator to Data Register Move instruction supports these options:

Table 4-1. Accumulator to Data Register Move

Option Accumulator Copy Formatting

32-bit extraction from Accumulator with 32-bit

Default -
saturation.

32-bit extraction with scaling and 32-bit
saturation.

Scales the Accumulator contents (multiplies x2
by a one-place shift left).

(1SS2)

If you want to keep the unaltered contents of the Accumulator, use asimple Move instruction to
copy A.x or A.w to or from aregister.

Blackfin DSP Instruction Set Reference 4-3

Move

4.1.7

4.1.8

4.1.9

4.1.10

4-4

Blﬂl.’l(/r@&

See Section 1.5.5, “ Saturation,” on page 1-6 for a description of saturation behavior.

Flags Affected

The ASTAT register that contains the flags can be explicitly modified by this instruction.

The Accumulator to D-register Move versions of this instruction affects the following flags.

* Vissetif theresult written to the D-register file saturates 32 bits; cleared if no saturation. In
the case of two simultaneous operations, V representsthelogical “OR” of the two.

e VSissetif V is set; unaffected otherwise.

* AZissetif resultiszero; cleared if non-zero. In the case of two simultaneous operations, AZ
represents the logical “OR” of the two.

* AN issetif result is negative; cleared if non-negative. In the case of two simultaneous
operations, AN represents the logical “OR” of the two.

All other flags are unaffected.

Required Mode

User & Supervisor for most cases.

Explicit accessesto USP, SEQSTAT, SY SCFG, RETI, RETX, RETN and RETE require Supervisor
mode. If any of these registers are explicitly accessed from User mode, an Illegal Use of Protected
Resource exception occurs.

Parallel Issue

The 32-bit versions of thisinstruction can beissued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

The 16-bit versions of this instruction cannot be issued in parallel with other instructions.

Example

r3=r0;
r7=p2;
r2=ad.w;
r2l =al.x;
ro=alx;
ab=al;
al=a0;
a0=r7 ;
al=r3 ;
retn=p0 ;
r2=a0;
r7=al;
ro=2a0 (iss2) ;

/I move R7 to 32-bit AO.W

/I move R3 to 32-bit A1.W

// must be in Supervisor mode

/I 32-bit move with saturation

/I 32-bit move with saturation

[* 32-bit move with scaling, truncation and
saturation */

Blackfin DSP Instruction Set Reference

Bma/(/?@ Move

41.11 Also See

Load Immediate to initialize registers.

Move Half-Register to move values explicitly into the A0.X and A1.X registers.

Zero Overhead Loop Setup to implicitly accessregisters LCO, LTO, LBO, LC1, LT1 and LB1.
Call, Raise and Return to implicitly access registers RETI, RETN, and RETS.

Force Exception and Force Emulation to implicitly access registers RETX and RETE.

4.1.12 Special Applications

Blackfin DSP Instruction Set Reference 4-5

Move Blﬂl.’l(/r@&

4.2 Move Conditional

42.1 General Form
IF CC dest_reg = src_reg

IF! CCdest_reg=src reg

4.2.2 Syntax

IF CC DPreg = DPreg ; /I moveif CC=1(a)
IF! CC DPreg=DPreg; /I moveif CC=0(a)

4.2.3 Syntax Terminology

DPreg: RO, ..., R7, PO, ..., P5, SP, FP

4.2.4 Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

4.2.5 Functional Description

The Move Conditional instruction moves source register contents into a destination register,
depending on the value of CC.

IF CC DPreg = DPreg, the move occurs only if CC = 1.
IF! CC DPreg = DPreg, the move occurs only if CC = 0.

The source and destination registers are any D-register or P-register.

4.2.6 Flags Affected

None

4.2.7 Required Mode

User & Supervisor

4.2.8 Parallel Issue

The Move Conditional instruction cannot be issued in parallel with other instructions.

4-6 Blackfin DSP Instruction Set Reference

Bma/(/?@ Move

4.2.9 Example

ifccr3=r0; / moveif CC=1
ifccr2=p4;

ifccp0=r7;

if ccp2=p5;

if lecr3=r0; / moveif CC=0
iflccr2=p4;

iflccp0=r7;

if lccp2=p5;

4.2.10 Also See

Compare, Move CC, Negate CC, Conditional Jump

4.2.11 Special Applications

Blackfin DSP Instruction Set Reference 4-7

Move

4.3

4.3.1

4.3.2

4.3.3

4.3.4

4.3.5

4.3.6

4.3.7

Blﬂl.’l(/r@&

Move Half-Word — Zero-Extended

General Form

dest reg=src_reg (2)

Syntax

Dreg = Dreg_lo (2); I/RG)

Syntax Terminology

Dreg: RO, ..., R7
Dreg_lo: RO.L, ..., R7.L

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

The Move Half-Word — Zero-Extended instruction converts an unsigned half-word (16 bits) to an
unsigned word (32 hits).

Theinstruction copies the least significant 16 bits from a source register into the lower half of a 32-
bit register. Zero-extend the upper half of the destination register. The operation supports only D-
registers. Zero extending a signal negative 16-bit number corrupts the number sign and magnitude
in most cases. (Trivial exception: 0x8000 has the same magnitude whether viewed as signed or
unsigned.)

Flags Affected

The following flags are affected by the Move Half-Word — Zero-Extended instruction:
* AZissetif resultis zero; cleared if non-zero.
* AN iscleared.
¢ ACOiscleared.

¢ Viscleared.

All other flags are unaffected.

Required Mode

User & Supervisor

Blackfin DSP Instruction Set Reference

Bma/(/?@ Move

4.3.8 Parallel Issue

Thisinstruction cannot be issued in parallel with other instructions.

4.3.9 Example

/11 r0.l = OXFFFF
r4=r0. (2); /[l Equivalenttor4.l =r0.l andr4.h=0
/I . .. then r4 = OXO000FFFF

4.3.10 Also See

Move Half-Word — Sign-Extended, Move Register Half

4.3.11 Special Applications

Blackfin DSP Instruction Set Reference 4-9

Move

4.4

4.4.1

4.4.2

4.4.3

4.4.4

4.4.5

4.4.6

4.4.7

4-10

Blﬂl.’l(/r@&

Move Half-Word — Sign-Extended

General Form

dest reg=src_reg

Syntax

Dreg =Dreg_lo (X) ; /AG)

Syntax Terminology
Dreg: RO, ..., R7

Dreg_lo: RO.L, ..., R7.L
Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

The Move Half-Word — Sign-Extended instruction converts a signed half-word (16 bits) to asigned
word (32 bits). The instruction copies the least significant 16 bits from a source register into the
lower half of a 32-bit register and sign-extends the upper half of the destination register. The
operation supports only D-registers.

Options

Optionally, (X) can beincluded in the instruction syntax to make it clearer that the load is sign
extended. This optional flag does not affect the instruction encoding, function, or performance.

Flags Affected

The following flags are affected by the Move Half-Word — Sign-Extended instruction:
e AZissetif result is zero; cleared if non-zero.
* AN issetif result is negative; cleared if non-negative.
* ACOiscleared.
* Viscleared.

All other flags are unaffected.

Blackfin DSP Instruction Set Reference

Bma/(/?@ Move

4.4.8 Required Mode

User & Supervisor

449 Parallel Issue

Thisinstruction cannot be issued in parallel with any other instructions.

4.4.10 Example

r4 =r0.(x) ;
r4=r0.l;

4411 Also See

Move Half-Word — Zero-Extended, Move Register Half

4.4.12 Special Applications

Blackfin DSP Instruction Set Reference 4-11

Move Blﬂl.’l(/r@&

4.5 Move Register Half

45.1 General Form
dest_reg half = src_reg_half

dest_reg_half = accumulator (opt_mode)

4.5.2 Syntax

AO0.X =Dreg_lo; I Yeast significant 8 bits of Dreg into A0.X (b)

A1X =Dreg lo; /1 * least significant 8 bits of Dreginto A1.X (b)

Dreg lo=A0.X; /* 8-bit A0.X, sign-extended, into least
significant 16 bits of Dreg (b) */

Dreg_ lo=A1X; /* 8-bit A1.X, sign-extended, into least
significant 16 bits of Dreg (b) */

AO.L =Dreg lo; [* least significant 16 bits of Dreg into least
significant 16 bits of AO.W (b) */

AlL =Dreg_lo; I* least significant 16 bits of Dreg into least
significant 16 bits of A1.W (b) */

AO.H =Dreg_hi ; /* most significant 16 bits of Dreg into most
significant 16 bits of AO.W (b) */

Al1.H=Dreg hi; /* most significant 16 bits of Dreg into most

significant 16 bits of A1.W (b) */
ACCUMULATOR TO HALF D-REGISTER MOVE

Dreg_lo= A0 (opt_mode); /* move AO to lower half of Dreg
(b) */

Dreg_hi = A1 (opt_mode); /* move A1 to upper half of Dreg
(b)*/

4.5.3 Syntax Terminology

Dreg_lo: the least significant 16 bits of registers RO, ..., R7
Dreg_hi: the most significant 16 bits of registers RO, ..., R7
AO.L: theleast significant 16 bits of Accumulator AO.W

AlL: thelesst significant 16 bits of Accumulator A1.W

AO.H: the most significant 16 bits of Accumulator AO.W
A1.H: the most significant 16 bits of Accumulator ALW
opt_mode: Optionaly (1S), (1U), (T), (S2RND), (1SS2), or (IH)

1. The Accumulator Extension registers A0.X and Al1.X are defined only for the 8 low-order bits A0.X[7:0] and A1.X[7:0]. This
instruction truncates the upper byte of Dreg_lo before moving the value into the Accumulator Extension register (A0.X or A1.X).

4-12 Blackfin DSP Instruction Set Reference

MW%EZK

4.5.4

4.5.5

Move

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Move Register Half instruction copies 16 bits from a source register into half of a 32-bit
register. The instruction does not affect the unspecified half of the destination register. It supports
only D-registers and the Accumulator.

One syntax version simply copies the 16 bits (saturated at 16 hits) of the Accumulator into a data
half-register. This syntax supports truncation and rounding beyond a simple Move Register Half
instruction.

The fraction version of thisinstruction (the default option) transfers the Accumulator result to the
destination register according to the diagrams below.

A0.X AO0.h AO.|
AO 0000 0000 | XXXX XXXX XXXX XXXX ‘ XXXX XXXX XXXX XXXX ‘

—

Destination Register ‘ XXXX XXXX XXXX XXXX ‘ XXXX XXXX XXXX XXXX

Al.X Al.h Alll
Al 0000 0000 | XXXX XXXX XXXX XXXX ‘ XXXX XXXX XXXX XXXX ‘

'

Destination Register ‘ XXXX XXXX XXXX XXXX ‘ XXXX XXXX XXXX XXXX

Blackfin DSP Instruction Set Reference 4-13

Move Blﬂl.’l(/r@&

Theinteger version of thisinstruction (the“(1S)” option) transfers the Accumul ator result to the
destination register according to the diagrams, shown below:

A0.X AO0.h AO.I
A0 0000 0000 | XXXX XXXX XXXX XXXX ‘ XXXX XXXX XXXX XXXX ‘

Destination Register ‘ XXXX XXXX XXXX XXXX ‘ XXXX XXXX XXXX XXXX

Al.X Al.h Alll
Al 0000 0000 ‘ XXXX XXXX XXXX XXXX ‘ XXXX XXXX XXXX XXXX ‘

'/—\J

Destination Register ‘ XXXX XXXK XXXX XXXX ‘ XXXX XXXX XXXX XXXX ‘

Some versions of thisinstruction are affected by the RND_MOD bit in the ASTAT register when
they copy the resultsinto the destination register. RND_MOD determines whether biased or
unbiased rounding isused. RND_MOD controlsrounding for all versions of thisinstruction except
the (1S) and (1SS2) options.

See Section 1.5.6, “Rounding and Truncating,” on page 1-7 for a description of rounding behavior.

4.5.6 Options

The Accumulator to Half D-Register Move instructions support the copy optionsin Table 4-2.

Table 4-2. Accumulator to Half D-Register Move Options (Sheet 1 of 2)

Option Accumulator Copy Formatting

High half-word extraction from Accumulator
with 16-bit saturation with rounding. Rounding
is controlled by RND_MOD bit in the ASTAT
register.

Default

Low half-word extraction from Accumulator

(S) with 16-bit saturation. No rounding.

Low half-word extraction from Accumulator
with 16-bit saturation with rounding. Rounding
is controlled by RND_MOD bit in the ASTAT
register.

(1)

High half-word extraction from Accumulator.
M Truncate low half-word with rounding.

Rounding is controlled by RND_MOD bit in the
ASTAT register.

4-14 Blackfin DSP Instruction Set Reference

Bma/(/?@

Move

Table 4-2. Accumulator to Half D-Register Move Options (Sheet 2 of 2)

4.5.7

4.5.8

4.5.9

Option Accumulator Copy Formatting

High half-word extraction with scaling,
rounding and 16-bit saturation. Rounding is
controlled by RND_MOD bit in the ASTAT
(S2RND) register.

Scales the Accumulator contents (multiplies x2
by a one-place shift left) and rounds the upper
16 bits before truncating the lower 16 bits.

Low half-word extraction with scaling and 16-
bit saturation. No rounding.

(1Ss2) Scales the Accumulator contents (multiplies x2

by a one-place shift left) before copying the
lower 16-bits.

High half-word extraction with 32-bit saturation,
(H) then rounding on upper 16-bits. Rounding is
controlled by RND_MOD bit in the ASTAT

register.

To truncate the result, the operation eliminates the least significant bits that do not fit into the
destination register.

When necessary, saturation is performed after the rounding.

If you want to keep the unaltered contents of the Accumulator, use asimple Move instruction to
copy A.x or A.w to or from aregister.

See Section 1.5.5, “ Saturation,” on page 1-6 for a description of saturation behavior.

Flags Affected

The Accumulator to Half D-register Move versions of thisinstruction affect the following flags.
¢ Vissetif the result written to the half D-register file saturates 16 bits; cleared if no saturation.
* VSissetif V isset; unaffected otherwise.
* AZissetif resultis zero; cleared if non-zero.

AN issetif result is negative; cleared if non-negative.

All other flags are unaffected.

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of thisinstruction can be issued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

Blackfin DSP Instruction Set Reference 4-15

Move

4.5.10

4.5.11

4.5.12

4-16

Example

aO.x=rll;
alx=r4l;
r7. =al.x;
rol =al.x;
a0l =r2l;
all=rll;
a0.l =15l ;
all=r3l;
a.h=r7.h;
al.h=r0.h;
r7.| = ao;
r2h=ai;
ro.h=al (is);
r5.1 = a0 (t);

rl.l = a0 (s2rnd);

r2.h = al (iss2);

r6. = a0 (ih);

Also See

Blﬂl.’l(/r@&

I/ copy AO.H into R7.L with saturation.
I/ copy AO.H into R2.H with saturation.
I/ copy A1.L into RO.H with saturation.
/* copy AO.H into R5.L; truncate AO.L;
no saturation.*/

/* copy AO.H into R1.L with scaling,
rounding & saturation.*/

/* copy Al.L into R2.H with scaling and
saturation.*/

/* copy AO.H into R6.L with saturation,
then rounding. */

Move Half-Word — Zero-Extended, Move Half-Word — Sign-Extended

Special Applications

Blackfin DSP Instruction Set Reference

Bma/(/?@

4.6

4.6.1
4.6.2
4.6.3
4.6.4

4.6.5

4.6.6

4.6.7

4.6.8

Move

Move Byte — Zero-Extended

General Form

dest_reg = src_reg_byte (2)

Syntax

Dreg = Dreg_byte (2); 11

Syntax Terminology

Dreg_byte: R[7:0].B, the low-order 8 bits of each Data Register

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description
The Move Byte — Zero-Extended instruction converts an unsigned byte to an unsigned word (32
bits). The instruction copies the least significant 8 bits from a source register into the least

significant 8 bits of a 32-bit register. The instruction zero-extends the upper bits of the destination
register. Thisinstruction supports only D-registers.

Flags Affected

The following flags are affected by the Move Byte — Zero-Extended instruction:
* AZissetif resultis zero; cleared if non-zero.
* AN iscleared.
¢ ACOiscleared.

* Viscleared.

All other flags are unaffected.

Required Mode

User & Supervisor

Parallel Issue

Thisinstruction cannot be issued in parallel with any other instructions.

Blackfin DSP Instruction Set Reference 4-17

Move Blﬂl.’l(/r@&

4.6.9 Example

r7=r2.b(2);

4.6.10 Also See

Move Register Half to explicitly access the Accumulator Extension registers A0.X and A1.X.

Move Byte — Sign-Extended.

4.6.11 Special Applications

4-18 Blackfin DSP Instruction Set Reference

Bma/(/?@

4.7

4.7.1
4.7.2
4.7.3
4.7.4

4.7.5

4.7.6

a4.7.7

4.7.8

Move

Move Byte — Sign-Extended

General Form

dest_reg = src_reg_byte

Syntax

Dreg = Dreg_byte (X) ; Il ()

Syntax Terminology

Dreg_byte: R[7:0].B, the low-order 8 bits of each Data Register

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

The Move Byte — Sign-Extended instruction converts a signed byte to a signed word (32 bits). It
copies the least significant 8 bits from a source register into the least significant 8 bits of a 32-bit
register. The instruction sign-extends the upper bits of the destination register. This instruction
supports only D-registers.

Options

Optionaly, (X) can be included in the instruction syntax to make it clearer that the load is sign
extended. This optional flag does not affect the instruction encoding, function, or performance.

Flags Affected

The following flags are affected by the Move Byte — Sign-Extended instruction:
* AZissetif resultis zero; cleared if non-zero.
* AN issetif result is negative; cleared if non-negative.
* ACOiscleared.

* Viscleared.

All other flags are unaffected.

Required Mode

User & Supervisor

Blackfin DSP Instruction Set Reference 4-19

Move

4.7.9

4.7.10

4.7.11

4.7.12

4-20

Parallel Issue

Blﬂl.’l(/r@&

Thisinstruction cannot be issued in parallel with any other instructions.

Example

r7=r2.b;
r7=r2.b(x) ;

Also See

Move Byte — Zero-Extended

Special Applications

Blackfin DSP Instruction Set Reference

STACK CONTROL 5

Instruction Summary

This chapter discusses the instructions that control the stack. Users can take advantage of these
instructions to save the contents of single or multiple registersto the stack or to control the stack
frame space on the stack and the Frame Pointer (FP) for that space.

Bu1 PUSN bbb ettt ettt b e aeer e 5-2
5.2 PUSH IMUITIPIE ..ttt e et 5-4
3 R = oY« YOO 5-6
5.4 POP MUITIPIE .ottt e 5-9
5.5 LINKBOE oot b e s 5-14

Blackfin DSP Instruction Set Reference 5-1

Stack Control ”’””"/’@&

5.1

5.1.1

5.1.2

5.1.3

5.1.4

5.1.5

5-2

Push

General Form

[--SP]=src reg

Syntax

[--SP]=dlreg; /I predecrement SP (@)

Syntax Terminology

alreg: RO, ..., R7, PO, ..., P5,FR 10, ..., 13, MO, ..., M3, BO, ..., B3, LO, ..., L3, A0.X, AO.W, ALX,
ALW, ASTAT, RETS, RETI, RETX, RETN, RETE, LCOand LC1, LTOand LT1, LBOand LB1,
EMUDAT, USP, SEQSTAT and SY SCFG

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

The Push instruction stores the contents of a specified register in the stack. The instruction
predecrements the Stack Pointer to the next available location in the stack first. Push and Push
Multiple are the only instructions that perform pre-modify functions.

The stack grows down from high memory to low memory. Consequently, the decrement operation
isused for pushing, and the increment operation is used for popping values. The Stack Pointer
always pointsto the last used location. Therefore, the effective address of the pushis SP-4.

The following picture shows what the stack would look like when a series of pushes occur.

higher memory

P5 [--sp]=p5;
P1 [--sp]=p1;

o fo s

lower memory

The Stack Pointer must already be 32-bit aligned to use thisinstruction. If an unaligned memory
access occurs, an exception is generated and the instruction aborts.

Push/pop on RETS has no effect on the interrupt system.
Push/pop on RETI does affect the interrupt system.
Pushing RETI enables the interrupt system, whereas popping RETI disables the interrupt system.

Blackfin DSP Instruction Set Reference

Bma/(/?@

5.1.6

5.1.7

5.1.8

5.1.9

5.1.10

5.1.11

Stack Control

Pushing the Stack Pointer is meaningless since it cannot be retrieved from the stack. Using the
Stack Pointer as the destination of a pop instruction (as in the fictional instruction SP=[SP++])
causes an undefined instruction exception. (Refer to Section 1.5.1, “ Register Names,” on page 1-4
for more information.)

Flags Affected

None

Required Mode

User & Supervisor for most cases.

Explicit accesses to USP, SEQSTAT, SYSCFG, RETI, RETX, RETN and RETE requires
Supervisor mode. A protection violation exception results if any of these registers are explicitly
accessed from User mode.

Parallel Issue

Thisinstruction cannot be issued in parallel with other instructions.

Example

888Y
S3ro

————

[y —

Also See

Push Multiple, Pop

Special Applications

Blackfin DSP Instruction Set Reference 5-3

Stack Control ”’””"/’@&

5.2

5.2.1

5.2.2

5.2.3

5.24

5.2.5

Push Multiple

General Form

[-- SP] = (src_reg_range)

Syntax

[--SP]=(R7:Dreglim, P5: Preglim) ; // Dregs and indexed Pregs (a)
[--SP]=(R7:Dreglim); // Dregs, only (@)
[--SP]=(P5: Preglim); /I indexed Pregs, only (a)

Syntax Terminology

Dreglim: any number in the range 7 through O
Preglim: any number in the range 5 through 0

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

The Push Multiple instruction saves the contents of multiple data and/or pointer registersto the
stack. The range of registers to be saved always includes the highest index register (R7 and/or P5)
plus any contiguous lower index registers specified by the user down to and including RO and/or
PO. Push and Push Multiple are the only instructions that perform pre-modify functions.

Theinstructions start by saving the register having the lowest index then advance to the register
with the highest index. The index of the first register saved in the stack is specified by the user in
the instruction syntax. Data registers are pushed before Pointer registersif both are specified in one
instruction.

The instruction predecrements the Stack Pointer to the next available location in the stack first.
The stack grows down from high memory to low memory, therefore the decrement operation is the
same used for pushing, and the increment operation is used for popping values. The Stack Pointer
always pointsto the last used location. Therefore, the effective address of the pushis SP-4.

The following picture shows what the stack would look like when a push multiple occurs.

higher memory

P3 [--sp]=(p5:3);

Lower memory

Blackfin DSP Instruction Set Reference

Bma/(/?@

5.2.6
5.2.7
5.2.8

5.2.9

5.2.10

5.2.11

Stack Control

Because the lowest-indexed registers are saved first, it is advisable that a runtime system be
defined to have its compiler scratch registers as the lowest-indexed registers. For instance, data
registers RO, PO would be the return value registers for a simple calling convention.

Although thisinstruction takes a variable amount of time to complete depending on the number of
registers to be saved, it reduces compiled code size.

Thisinstructionisnot interruptible. Interrupts asserted after thefirst stack write operation isissued
are pended until al the writes complete. However, exceptions that occur while thisinstructionis
executing causeit to abort gracefully. For example, aload/store operation might cause a protection
violation while Push Multipleis executing. The SPisreset to its value before the execution of this
instruction. This measure ensures that the instruction can be restarted after the exception. Note
that when a Push Multiple operation is aborted due to an exception, the memory state is changed by
the stores that have already completed before the exception.

The Stack Pointer must already be 32-bit aligned to use thisinstruction. If an unaligned memory
access occurs, an exception is generated and the instruction aborts, as described above.

Only pointer registers PO, ..., P5 can be operands for thisinstruction; SP and FP cannot. All data
registers RO, ..., R7 can be operands for thisinstruction.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

Thisinstruction cannot be issued in parallel with other instructions.

Example

[-sp]=(r7:5,p5:0) ; /I D-registers R[4:0] optionally excluded
[-sp]=(72); /I R1:0 excluded

[--sp]=(p54); /1 P[3:0] excluded

Also See

Push, Pop, Pop Multiple

Special Applications

Blackfin DSP Instruction Set Reference 5-5

Stack Control ”’””"/’@&

5.3

5.3.1

5.3.2

5.3.3

5.3.4

5.3.5

Pop

General Form

dest reg=[SP++]

Syntax

alreg=[SP++]; /1 post-increment SP (@)

Syntax Terminology

alreg: RO, ..., R7, PO, ..., P5,FR 10, ..., 13, MO, ..., M3, BO, ..., B3, LO, ..., L3, A0.X, AO.W, ALX,
ALW, ASTAT, RETS, RETI, RETX, RETN, RETE, LCOand LC1, LTOand LT1, LBOand LB1,
EMUDAT, USP, SEQSTAT and SY SCFG

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

The Pop instruction |oads the contents of the stack indexed by the current Stack Pointer into a
specified register. The instruction post-increments the Stack Pointer to the next occupied location
in the stack before concluding.

The stack grows down from high memory to low memory, therefore the decrement operation is
used for pushing, and the increment operation is used for popping values. The Stack Pointer
always pointsto the last used location. When a pop operation is issued the value pointed to by the
Stack Pointer istransferred and the SPis replaced by SP+4.

The following picture shows what the stack would look like when apop suchasR3=[SP ++]
occurs.

higher memory

WordO
Word1 BEGINNING STATE
otz |-

lower memory

Blackfin DSP Instruction Set Reference

Bma/(/?@

5.3.6

5.3.7

5.3.8

Stack Control

higher memory

WordO
Word1 LOAD REGISTER R3 FROM STACK

Word2 | <---m-- ========> R3= Word2

lower memory

higher memory

Wordo POST-INCREMENT STACK POINTER
s | <
Word2

lower memory

The value just popped remains on the stack until another push instruction overwritesit.

Of course, the usual intent for pop isto recover register values that were previously pushed onto the
stack. The user must exercise programming discipline to restore the stack values back to their
intended registers from the first-in, last-out structure of the stack. Pop exactly the same registers
that were pushed onto the stack, but pop them in the opposite order.

The Stack Pointer must already be 32-bit aligned to use thisinstruction. If an unaligned memory
access occurs, an exception is generated and the instruction aborts.

A value cannot be popped off the stack directly into the Stack Pointer. SP = [SP ++] isaninvalid
instruction. Refer to Section 1.5.1, “Register Names,” on page 1-4 for more information.

Flags Affected

None

Required Mode

User & Supervisor for most cases.

Explicit accesses to USP, SEQSTAT, SYSCFG, RETI, RETX, RETN and RETE requires
Supervisor mode. A protection violation exception results if any of these registers are explicitly
accessed from User mode.

Parallel Issue

Thisinstruction cannot be issued in parallel with other instructions.

Blackfin DSP Instruction Set Reference 5-7

Stack Control

5.3.9 Example
r0=[sp++] ;
p4 = [sp++] ;

i1=[sp++] ;
reti = [sp++] ;

5.3.10 Also See

Push, Push Multiple, Pop Multiple

5.3.11 Special Applications

Blﬂl.’l(/r@&

/I supervisor mode required

Blackfin DSP Instruction Set Reference

Bma/(/?@

5.4

5.4.1

5.4.2

5.4.3

5.4.4

5.4.5

Stack Control

Pop Multiple

General Form

(dest_reg _range) =[SP ++]

Syntax

(R7: Dreglim, P5: Preglim) =[SP++] ; // Dregs and indexed Pregs (a)
(R7:Dreglim)=[SP++]; // Dregs, only (@)
(P5:Preglim)=[SP++]; Il indexed Pregs, only (a)

Syntax Terminology

Dreglim: any number in the range 7 through O
Preglim: any number in the range 5 through O

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

The Pop Multiple instruction restores the contents of multiple data and/or pointer registers from the
stack. The range of registersto be restored always includes the highest index register (R7 and/or
P5) plus any contiguous lower index registers specified by the user down to and including RO and/
or PO.

Theinstructions start by restoring the register having the highest index then descend to the register
with thelowest index. Theindex of the last register restored from the stack is specified by the user
in the instruction syntax. Pointer registers are popped before Data registersif both are specified in
the same instruction.

Theinstruction post-increments the Stack Pointer to the next occupied location in the stack before
concluding.

The stack grows down from high memory to low memory, therefore the decrement operation is
used for pushing, and the increment operation is used for popping values. The Stack Pointer
always pointsto the last used location. When a pop operation is issued the value pointed to by the
Stack Pointer istransferred and the SP is replaced by SP+4.

The following pictures show what the stack would look like when a Pop Multiple such as (R7:5) =
[SP++] occurs.

Blackfin DSP Instruction Set Reference 5-9

Stack Control

higher memory

Word0
Word1
Word?2
Word3

lower memory

higher memory

R3
R4
R6
R7

lower memory

higher memory

R4
R5
R6
R7

lower memory

higher memory.

R5
R6
R7

lower memory

5-10

BEGINNING STATE

LOAD REGISTER R7 FROM STACK
—===—=—===> R7 = Word3

LOAD REGISTER R6 FROM STACK
—===—=—===> R6 = Word2

LOAD REGISTER R5 FROM STACK
—===—=—===> R5 = Word1

Blﬂl.’l(/r@&

Blackfin DSP Instruction Set Reference

Bma/(/?@ Stack Control

higher memory

POST-INCREMENT STACK POINTER

Wc.>‘r‘d0 F—

Word1
Word2

lower memory

The value(s) just popped remain on the stack until another push instruction overwritesiit.

Of course, the usual intent for Pop Multiple is to recover register values that were previously
pushed onto the stack. The user must exercise programming discipline to restore the stack values
back to their intended registers from the first-in, last-out structure of the stack. Pop exactly the
same registers that were pushed onto the stack, but pop them in the opposite order.

Although thisinstruction takes a variable amount of time to complete depending on the number of
registers to be saved, it reduces compiled code size.

Thisinstruction is not interruptible. Interrupts asserted after the first stack read operation isissued
are pended until al the reads complete. However, exceptions that occur while thisinstruction is
executing causeit to abort gracefully. For example, aload/store operation might cause a protection
violation while Pop Multipleis executing. In that case, SPisreset to itsoriginal value prior to the
execution of thisinstruction. This measure ensures that the instruction can be restarted after the
exception.

Note that when a Pop Multiple operation aborts due to an exception, some of the destination
registers are changed as a result of loads that have already completed before the exception.

The Stack Pointer must already be 32-bit aligned to use thisinstruction. If an unaligned memory
access occurs, an exception is generated and the instruction aborts, as described above.

Only pointer registers PO, ..., P5 can be operands for thisinstruction; SP and FP cannot. All data
registers RO, ..., R7 can be operands for thisinstruction.

5.4.6 Flags Affected

None

5.4.7 Required Mode

User & Supervisor

548 Parallel Issue

Thisinstruction cannot be issued in parallel with other instructions.

Blackfin DSP Instruction Set Reference 5-11

Stack Control

5.4.9

5-12

Example

(PS:4) =[sp++];
(r7:2)=[sp++] ;

(r7:5,p5:0)=[sp++] ;

Blﬂl.’l(/r@&

/I P[3:0] excluded
// R1:0 excluded
/I D-registers R[4:0] optionally excluded

Blackfin DSP Instruction Set Reference

Bma/(/?@ Stack Control

54.10 Also See

Push, Push Multiple, Pop

5411 Special Applications

Blackfin DSP Instruction Set Reference 5-13

Stack Control ”’””"/’@&

5.5

5.5.1

5.5.2

5.5.3

5.5.4

5.5.5

5-14

Linkage

General Form

LINK, UNLINK

Syntax

LINK uimm18m4 ; /I allocate a stack frame of specified size (b)
UNLINK ; /I de-allocate the stack frame (b)

Syntax Terminology

uimm18m4: 18-bit unsigned field that must be a multiple of 4, with arange of 8 through 262,152
bytes (0x00008 through Ox3FFFC)

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Linkage instruction controls the stack frame space on the stack and the Frame Pointer (FP) for
that space. LINK allocates the space and UNLINK de-allocates the space.

LINK saves the current RETS and FP registers to the stack, loads the FP register with the new
frame address, then decrements the SP by the user-supplied frame size value.

Typical applications follow the LINK instruction with a Push Multiple instruction to save pointer
and data registers to the stack.

The user-supplied argument for LINK determines the size of the allocated stack frame. LINK
always saves RETS and FP on the stack, so the minimum frame size is 2 words when the argument
iszero. The maximum stack frame sizeis 2 + 8 = 262152 bytes in 4-byte increments.

UNLINK performsthe reciprocal of LINK, de-allocating the frame space by moving the current
value of FP into SP and restoring previous values into FP and RETS from the stack.

The UNLINK instruction typically follows a Pop Multiple instructions that restores pointer and
data registers previously saved to the stack.

The frame values remain on the stack until a subsequent Push, push Push Multiple or LINK
operation overwrites them.

Of course, FP must not be modified by user code between LINK and UNLINK to preserve stack
integrity.

Blackfin DSP Instruction Set Reference

Bma/(/?@

Blackfin DSP Instruction Set Reference

Stack Control

Neither LINK nor UNLINK can beinterrupted. However, exceptions that occur while either of
these instructions is executing causes the instruction to abort. For example, aload/store operation
might cause a protection violation while LINK is executing. In that case, SP and FP are reset to
their original values prior to the execution of thisinstruction. This measure ensures that the
instruction can be restarted after the exception.

Note that when a LINK operation aborts due to an exception, the stack memory may already be
changed due to stores that have already completed before the exception. Likewise, an aborted
UNLINK operation may leave the FP and RETS registers changed because of aload that has
already completed before the interruption.

The figures below show the stack contents after executing a LINK instruction followed by a Push
Multiple instruction.

higher memory

AFTER LINK EXECUTES

Saved RETS

Prior FP <-FP

Allocated
words for local
subroutine
variables

<-SP = FP + frame_size

lower memory

higher memory

AFTER A PUSH

Saved RETS MULTIPLE EXECUTES

Prior FP <-FP

Allocated
words for local
subroutine
variables

RO
R1

R7
PO

P5 <-SP

lower memory

The Stack Pointer must already be 32-bit aligned to use thisinstruction. If an unaligned memory
access occurs, an exception is generated and the instruction aborts, as described above.

5-15

Stack Control ”’””"/’@&

5.5.6

5.5.7

5.5.8

5.5.9

5.5.10

5.5.11

5-16

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

Thisinstruction cannot be issued in parallel with other instructions.

Example

link 8 ; /I establish frame with 8 words allocated for local variables
[-sp]=(r7:0, p5:0) ; I/ save D- and P-registers

(r7:0,p5:0) =[sp++]; /I restore D- and P-registers

unlink ; /I close the frame

Also See

Push Multiple, Pop Multiple

Special Applications

The linkage instruction is used to setup and tear down stack frames for a high-level language like
C.

Blackfin DSP Instruction Set Reference

CONTROL CODE BIT MANAGEMENT ©

Instruction Summary

This chapter discusses the instructions that affect the Control Code (CC) bit in the ASTAT register.
Users can take advantage of these instructions to set the CC bit based on a comparison of values
from two registers, pointers, or accumulators. In addition, these instructions can move the status of
the CC hit to and from a data register or arithmetic status bit, or they can negate the status of the

CC hit.
6.1 Compare DataREQISIENcccerireririirie ittt e 6-2
6.2 COMPArE POINLETcviieeiieieieeerierie et 6-5
6.3 Compare ACCUMUIBLOTcceeiuereeieeierie ettt e eb e 6-7
8.4 IMOVE CC ..ttt 6-9
6.5 NEJAE CC ...ttt st bt ae e sae e b renbeen 6-12

Blackfin DSP Instruction Set Reference 6-1

Control Code Bit Management ”’””"/’@&

6.1

6.1.1

6.1.2

6.1.3

6.1.4

6.1.5

Compare Data Register

General Form

CC = operand_1 == operand_2

CC =operand_1 <operand _2
CC=operand _1<=operand_2
CC=operand_1<operand_2(1U)
CC=operand _1<=operand 2(I1U)

Syntax

CC =Dreg==Dreg; I/ equal, register, signed (a)
CC=Dreg==imm3; /I equal, immediate, signed (a)
CC=Dreg<Dreg; /' less than, register, signed (a)
CC=Dreg<imm3; /I less than, immediate, signed (a)
CC=Dreg <=Dreg; /I less than or equal, register, signed (a)
CC=Dreg<=imm3; /l'less than or equal, immediate, signed (a)
CC=Dreg<Dreg(IU); Il less than, register, unsigned (a)
CC=Dreg<uimm3(1U); /I less than, immediate, unsigned (a)
CC=Dreg<=Dreg(1U); /l'less than or equal, register, unsigned (a)
CC=Dreg<=uimm3(1U); /' less than or equal, immediate unsigned (@)

Syntax Terminology

Dreg: RO, ..., R7
imm3: 3-bit signed field, with arange of -4 through 3
uimmg3: 3-bit unsigned field, with arange of 0 through 7

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

The Compare Data Register instruction sets the CC Control Code bit based on a comparison of two
values. The input operands are D-registers.

The compare operations are non-destructive on the input operands and affect only the CC hit and
the flags. The value of the CC bit determines all subsequent conditional branching.

Blackfin DSP Instruction Set Reference

Bma/(/?@ Control Code Bit Management

The various forms of the Compare Data Register instruction perform 32-bit signed compare
operations on the input operands or an unsigned compare operation if the (IU) syntax is used. The
compare operations perform asubtraction and discard the result of the subtraction without affecting
user registers. The compare operation that you specify determines the value of the CC hit.

6.1.6 Flags Affected

The Compare Data Register instruction uses the following values in signed and unsigned compare

operations:
Comparison Signed Unsigned
Equal AZ=1 n/a
Less than AN=1 AC=0
Less than or equal AN or AZ=1 AC=0 or AZ=1

The following flags are affected by the Compare Data Register instruction:
* CCissetif thetest condition istrue; cleared if false.
* AZissetif resultis zero; cleared if non-zero.
* AN issetif result is negative; cleared if non-negative.
¢ ACOissetif result generated a carry; cleared if no carry.

All other flags are unaffected.

6.1.7 Required Mode

User & Supervisor

6.1.8 Parallel Issue

Thisinstruction cannot be issued in parallel with other instructions.

Blackfin DSP Instruction Set Reference 6-3

Control Code Bit Management

6.1.9

6.1.10

6.1.11

Example

cc=r3==r2;
cc=r7==1,;

cc=r0<r3;

cc=r2<-4;
cc=r6<=r1;
cc=r4<=3;

cc=r5<r3(iu);

cCc=rl<0x7 (iu);
cc=r2<=r0(iu);
cc=r3<=2(iu);

Also See

Blﬂl.’l(/r@&

* 1f r0 = OX8FFF FFFF and r3 = 0x0000 0001,
then the unsigned operation . . . */

[* ... produces cc = 1, because r0 istreated as
anegative value */

* 1f r0 = OX8FFF FFFF and r3 = 0x0000 0001,
then the unsigned operation . . .

[* ... produces CC = 0, because r0 is treated as
alarge unsigned value */

Compare Pointer, Compare Accumulator, Conditional Jump

Special Applications

Blackfin DSP Instruction Set Reference

Bma/(/?@

6.2

6.2.1

6.2.2

6.2.3

6.2.4

6.2.5

Compare Pointer

General Form

CC = operand_1 == operand_2

CC =operand_1 < operand _2
CC=operand _1<=operand 2
CC=operand _1<operand_2(1U)
CC=operand _1<=operand 2(I1U)

Syntax

CC =Preg == Preg;
CC=Preg==imm3;
CC=Preg<Preg;
CC=Preg<imm3;

CC =Preg<=Preg;
CC=Preg<=imm3;
CC=Preg<Preg(IU) ;
CC=Preg<uimm3(IU) ;
CC=Preg<=Preg (1U) ;
CC=Preg<=uimm3 (IU) ;

Syntax Terminology

Preg: PO, ..., P5, SP, FP

Control Code Bit Management

Il equal, register, signed (a)

I/l equal, immediate, signed (a)

/I less than, register, signed (a)

[less than, immediate, signed (@)

/' less than or equal, register, signed (a)

/' less than or equal, immediate, signed (a)
Il less than, register, unsigned (a)

I less than, immediate, unsigned (a)

I less than or equal, register, unsigned (a)

I/ less than or equal, immediate unsigned (a)

imm3: 3-bit signed field, with arange of -4 through 3
uimm3: 3-hit unsigned field, with arange of 0 through 7

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

The Compare Pointer instruction sets the CC Control Code bit based on a comparison of two

values. The input operands are P-registers.

The compare operations are non-destructive on the input operands and affect only the CC bit and
the flags. The value of the CC bit determines all subsequent conditional branching.

Blackfin DSP Instruction Set Reference

Control Code Bit Management ”’””"/’@&

6.2.6

6.2.7

6.2.8

6.2.9

6.2.10

6.2.11

The various forms of the Compare Pointer instruction perform 32-bit signed compare operations on
the input operands or an unsigned compare operation if the (IU) syntax is used. The compare
operations perform a subtraction and discard the result of the subtraction without affecting user
registers. The compare operation that you specify determines the value of the CC hit.

Flags Affected

* CCissetif thetest conditionistrue; cleared if false.

All other flags are unaffected.

Required Mode

User & Supervisor

Parallel Issue

Thisinstruction cannot be issued in parallel with other instructions.

Example

cc=p3==p2;
cc=p0==1;
cc=p0<p3;
cc=p2<-4;
cc=pl<=p0;
cc=pd<=3;
cc=p5<p3(iu);
cc=pl<Ox7(iu);
cc=p2<=p0 (iu);
cc=p3<=2(iu);

Also See

Compare Data Register, Compare Accumulator, Conditional Jump

Special Applications

Blackfin DSP Instruction Set Reference

Bma/(/?@

6.3

6.3.1

6.3.2

6.3.3

6.3.4

6.3.5

Control Code Bit Management

Compare Accumulator

General Form

CC=A0==A1
CC=A0<Al
CC=A0<=A1

Syntax

CC=A0==A1; I/ equal, signed (a)
CC=A0<A1; /1 less than, Accumulator, signed (a)
CC=A0<=A1; I/ less than or equal, Accumulator, signed (a)

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

The Compare Accumulator instruction sets the CC Control Code bit based on a comparison of two
values. Theinput operands are Accumulators.

These instructions perform 40-bit signed compare operations on the Accumulators. The compare
operations perform a subtraction and discard the result of the subtraction without affecting user
registers. The compare operation that you specify determines the value of the CC hit.

No unsigned compare operations nor immediate compare operations are performed for the
Accumulators.

The compare operations are non-destructive on the input operands, and affect only the CC bit and
theflags. All subsequent conditional branching is based on the value of the CC bit.

Flags Affected

The Compare Accumulator instruction uses the following values in compare operations:

Comparison Signed
Equal AzZ=1
Less than AN=1
Less than or equal AN or AZ=1

The following arithmetic status bits reside in the ASTAT register:

Blackfin DSP Instruction Set Reference 6-7

Control Code Bit Management ”’””"/’@&

6.3.6

6.3.7

6.3.8

6.3.9

6.3.10

* CCissetif thetest condition istrue; cleared if false.

e AZissetif result is zero; cleared if non-zero.

* AN issetif result is negative; cleared if non-negative.

e ACOissetif result generated a carry; cleared if no carry.

All other flags are unaffected.

Required Mode

User & Supervisor

Parallel Issue

Thisinstruction cannot be issued in parallel with other instructions.

Example

cc=al==al;
cc=ad<al;
cc=ald<=al;

Also See

Compare Pointer, Compare Data Register, Conditional Jump

Special Applications

Blackfin DSP Instruction Set Reference

Bma/(/?@ Control Code Bit Management

6.4 Move CC

6.4.1 General Form

dest=CC
dest |= CC
dest &=CC
dest *=CC
CC = source
CC |=source
CC &= source
CC ~= source

6.4.2 Syntax

Dreg=CC; [/l CC into 32-bit data register, zero-extended (a)
statbit = CC ; /I status bit equals CC (a)

stathit |= CC; /I status bit equal s status bit OR CC (a)

statbit &= CC; /I status bit equals status bit AND CC (@)

statbit = CC ; /I status bit equal s status bit XOR CC (a)
CC=Dreg; /l CC set if the register is non-zero (a)

CC = dtathit ; /I CC equals status bit (a)

CC |= stathit ; /I CC equals CC OR status bit (a)

CC &= stathit ; /I CC equals CC AND status hit (a)

CC "= gtathit ; I/l CC equals CC XOR status hit (a)

6.4.3 Syntax Terminology

Dreg: RO, ..., R7
stathit: AZ, AN, ACO, ACL, V, VS, AVQ, AV0S, AV1, AV1S, AQ

6.4.4 Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

6.4.5 Functional Description

The Move CC instruction moves the status of the Control Code (CC) bit to and from a data register

or arithmetic status bit.

Blackfin DSP Instruction Set Reference

Control Code Bit Management ”’””"/’@&

6.4.6

6.4.7

6.4.8

6.4.9

6.4.10

6.4.11

6-10

When copying the CC bit into a 32-hit register, the operation moves the CC into the least
significant bit of the register, zero-extended to 32 bits. The two cases are as follows:

If CC =0, Dreg becomes 0x00000000.
If CC = 1, Dreg becomes 0x00000001.

When copying adataregister to the CC hit, the operation setsthe CC bit to 1 if any bit in the source
dataregister is set; that is, if the register is non-zero. Otherwise, the operation clears the CC hit.

Some versions of thisinstruction logically set or clear an arithmetic status bit based on the status of
the Control Code.

The use of the CC bit as source and destination in the same instruction is disallowed. Seethe
NEGATE CC instruction to change CC based solely on its own value.

Flags Affected
The Move CC instruction affects flags CC, AZ, AN, ACO, AC1, V, VS, AV0, AVOS, AV1, AV1S,

AQ, according to the status bit and syntax used, as described in “ Syntax” on page 6-9. All other
flags not explicitly specified by the syntax are unaffected.

Required Mode

User & Supervisor

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Parallel Issue

Thisinstruction cannot be issued in parallel with other instructions.

Example

rO=cc;
az=cc;
anj=cc;
ac0 &=cc;
av0™=cc;
cc=r4;
cc=zavl;
ccl=aq;
cc&=an;
cc=acl;

Also See

NEGATE CC

Blackfin DSP Instruction Set Reference

Bma/(/?@ Control Code Bit Management

6.4.12 Special Applications

Blackfin DSP Instruction Set Reference 6-11

Control Code Bit Management ”’””"/’@&

6.5

6.5.1

6.5.2

6.5.3

6.5.4

6.5.5

6.5.6

6.5.7

6.5.8

6.5.9

6.5.10

6-12

Negate CC

General Form

cc=!cc
Syntax
cc=!cc; G

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

The Negate CC instruction inverts the logical state of CC.

Flags Affected

CC istoggled from its previous value by the Negate CC instruction. All other flags are unaffected.

Required Mode

User & Supervisor

Parallel Issue

Thisinstruction cannot be issued in parallel with other instructions.

Example

cc=lcc;

Also See

Move CC

Special Applications

Blackfin DSP Instruction Set Reference

LOGICAL OPERATIONS 7

Instruction Summary

This chapter discusses the instructions that specify logical operations. Users can take advantage of
these instructions to perform logical AND, NOT, OR, exclusive-OR, and bit-wise, exclusive-OR

operations.
T.1 AND e 7-2
7.2 NOT ('S COMPIEMENL) ..o s 7-4
< T © | ST 7-6
R (o TV S Y 7-8
7.5 Bit-WiSe EXCIUSIVE-ORc.oiiiiiiiiiiriiiierece s 7-10

Blackfin DSP Instruction Set Reference 7-1

Logical Operations ”’””"/’@&

7.1

7.1.1

7.1.2

7.1.3

7.1.4

7.1.5

7.1.6

7.1.7

7.1.8

AND

General Form

dest reg=src reg 0& src reg 1

Syntax

Dreg = Dreg & Dreg; /AG)

Syntax Terminology

Dreg: RO, ..., R7

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

The AND instruction performs a 32-bit, bit-wiselogical AND operation on the two source registers
and stores the results into the dest_reg.

Theinstruction does not implicitly modify the source registers. The dest_reg and one src_reg can
be the same D-register. So doing explicitly modifies the src_reg.

Flags Affected

The AND instruction affects flags as follows:
e AZissetif thefinal result iszero, cleared if non-zero.
* AN issetif theresult is negative, cleared if non-negative.
¢ ACand AVO are cleared.

All other flags are unaffected.

Required Mode

User & Supervisor

Parallel Issue

Thisinstruction cannot be issued in parallel with other instructions.

Blackfin DSP Instruction Set Reference

Bma/(/?@

7.1.9 Example

r4=r4 & r3;

7.1.10 Also See

OR

7.1.11 Special Applications

Blackfin DSP Instruction Set Reference

Logical Operations

/-3

Logical Operations ”’””"/’@&

7.2

7.2.1

1.2.2

7.2.3

71.2.4

7.2.5

7.2.6

1.2.7

7.2.8

NOT (1's Complement)

General Form

dest reg=~src_reg

Syntax

Dreg =~ Dreg ; I1(@)

Syntax Terminology

Dreg: RO, ..., R7

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

The NOT (1's Complement) instruction toggles every bit in the 32-bit register.

Theinstruction does not implicitly modify the src_reg. The dest_reg and src_reg can be the same
D-register. Using the same D-register as the dest_reg and src_reg would explicitly modify the
src_reg at your discretion.

Flags Affected

The NOT (1's Complement) instruction affects flags as follows:
e AZissetif thefinal result iszero, cleared if non-zero.
* AN issetif theresult is negative, cleared if non-negative.
¢ ACand AVO are cleared.

All other flags are unaffected.

Required Mode

User & Supervisor

Parallel Issue

Thisinstruction cannot be issued in parallel with other instructions.

Blackfin DSP Instruction Set Reference

Bma/(/?@

7.2.9 Example

r3=~r4;

7.2.10 Also See

Negate (Two's Complement)

7.2.11 Special Applications

Blackfin DSP Instruction Set Reference

Logical Operations

7-5

Logical Operations ”’””"/’@&

7.3

7.3.1

7.3.2

7.3.3

7.3.4

7.3.5

7.3.6

7.3.7

7.3.8

OR

General Form

dest reg=src_reg O|src reg_ 1

Syntax

Dreg = Dreg | Dreg ; /AG)

Syntax Terminology

Dreg: RO, ..., R7

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

The OR instruction performs a 32-bit, bit-wise logical OR operation on the two source registers
and stores the results into the dest_reg.

Theinstruction does not implicitly modify the source registers. The dest_reg and one src_reg can
be the same D-register. So doing explicitly modifies the src_reg.

Flags Affected

The OR instruction affects flags as follows:
e AZissetif thefinal result iszero, cleared if non-zero.
* AN issetif theresult is negative, cleared if non-negative.
¢ ACand AVO are cleared.

All other flags are unaffected.

Required Mode

User & Supervisor

Parallel Issue

Thisinstruction cannot be issued in parallel with other instructions.

Blackfin DSP Instruction Set Reference

Bma/(/?@

7.3.9 Example

rd=r4|r3;

7.3.10 Also See

Exclusive-OR, Bit-Wise Exclusive-OR

7.3.11 Special Applications

Blackfin DSP Instruction Set Reference

Logical Operations

Logical Operations ”’””"/’@&

7.4

7.4.1

71.4.2

7.4.3

7.4.4

7.4.5

7.4.6

1.4.7

7.4.8

Exclusive-OR

General Form

dest reg=src reg 0" src reg 1

Syntax

Dreg = Dreg ” Dreg ; /1 (@)

Syntax Terminology

Dreg: RO, ..., R7

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

The Exclusive-OR (XOR) instruction performs a 32-bit, bit-wise logical exclusive OR operation
on the two source registers and loads the results into the dest_reg.

The XOR instruction does not implicitly modify source registers. The dest_reg and one src_reg
can be the same D-register. So doing explicitly modifies the src_reg.

Flags Affected

The XOR instruction affects flags as follows:
e AZissetif thefinal result iszero, cleared if non-zero.
* AN issetif theresult is negative, cleared if non-negative.
¢ ACand AVO are cleared.

All other flags are unaffected.

Required Mode

User & Supervisor

Parallel Issue

Thisinstruction cannot be issued in parallel with other instructions.

Blackfin DSP Instruction Set Reference

Bma/(/?@

7.4.9 Example

r4=r4"r3;

7.4.10 Also See

OR, Bit-Wise Exclusive-OR

7.4.11 Special Applications

Blackfin DSP Instruction Set Reference

Logical Operations

Logical Operations ”’””"/’@&

7.5

7.5.1

7.5.2

7.5.3

7.5.4

7.5.5

7-10

Bit-Wise Exclusive-OR

General Form

dest reg=CC =BXORSHIFT (A0, src_reg)
dest reg=CC=BXOR (AQ, src_reg)
dest_reg = CC=BXOR (A0, AL, CC)

A0 =BXORSHIFT (A0,Al1,CC)

Syntax

LFSR TYPE | (WITHOUT FEEDBACK)
Dreg_lo=CC = BXORSHIFT (AQ, Dreg) ; /1 (b)
Dreg lo=CC=BXOR (A0, Dreg) ; Il (b)

LFSR TYPE | (WITH FEEDBACK)
Dreg_lo= CC = BXOR (A0, AL CC); 11 (b)
A0 =BXORSHIFT (A0, A1,CC); 11 (b)

Syntax Terminology

Dreg: RO, ..., R7
Dreg_lo: RL[7:0]

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

Four Bit-wise Exclusive-OR (BXOR) instructions support two different types of LFSR
implementations.

The Type | LFSRs (no feedback) applies a 32-hit registered mask to a40-hit state residing in
Accumulator AO, followed by a bit-wise XOR reduction operation. Theresult isplaced in CC and
a destination register half.

The Type | LFSRs (with feedback) applies a 40-bit mask in Accumulator A1 to a 40-hit state
residing in AO. Theresult is shifted into AO.

In the following circuits describing the BXOR instruction group, abit-wise XOR reduction is
defined as:

out = (B, 0 By) O B,) O By)..0B,_,)

Blackfin DSP Instruction Set Reference

Bma/(/?@

Logical Operations

where B through By_; represent the N bits that result from masking the contents of Accumulator
A0 with the polynomial stored in either A1 or a 32 bit register. The instruction descriptions are
shown in Figure 7-1, “Bit-Wise Exclusive OR Reduction” .

Figure 7-1. Bit-Wise Exclusive OR Reduction

7.55.1

><AJD » (D)

D[0] D[1]

Al0] Al1]

In the figure above, the bits AQ[0] and AQ[1] are logically AND’ed with bits D[0] and D[1]. The
result from this operation is XOR reduced according to the following formula:

s(D) = (40[0] « D[0]) DO (40[1] = D[1])

Modified Type | LSFR (without feedback)

Two instructions support the LSFR with no feedback. They are:
Dreg_lo = BXORSHIFT(AO,dreg), and
Dreg_lo = CC = BXOR(AO,dreg)

In the first instruction the Accumulator A0 is left shifted by 1 prior to the XOR reduction. This
instruction provides a bitwise XOR of AQ logically AND’ ed with a dreg. The result of the
operation is placed into both the CC flag and the least significant bit of the destination register. The
operation is shown below in Figure 7-2.

The upper 15 bits of dreg_lo are overwritten with zero, and dr[0] = IN after the operation.

Blackfin DSP Instruction Set Reference 7-11

Logical Operations

Figure 7-2. AO Left Shifted by 1 Followed by XOR Reduction

Blﬂl.’l(/r@&

S A e e

XOR
Reduction
A0[38] °

Before XOR
Reduction

A0[39] |—

AO[38]

—— Ao[37]

A0[39:0]

R — "0"
Left Shift

by 1

D[31] e o0 D[2] D[1] D[0]
o0 A0[30] oo e AO[1] —— AO0[0]
After
Operation

dr[15] —— dr{14] f—— dr{13] oo 0 IN

dreg_lo[15:0]

CcC

dreg_lo

The second instruction in this class performs a bitwise XOR of A0O logically AND'ed with the dreg.
The output is placed into the least significant bit of the destination register and into the CC bit. The
Accumulator A0 is not modified by this operation. Thisoperation isillustrated in Figure 7-3.

The upper 15 bits of dreg_lo are overwritten with zero, and dr[0] = IN after the operation.

Figure 7-3. XOR of AO, Logical AND with the D-Register

7-12

AO[39]

A0[0]

D[31] L 4 D[2] D[1] D[0]
A
oo o AO0[31] LI) A0[2] AO[1]
After
Operation
dr[15] dr[14] dr[13] o0 0 IN
dreg_lo[15:0]

CC
dreg_lo

Blackfin DSP Instruction Set Reference

Bma/(/?@

7.5.5.2

Logical Operations

Modified Type | LFSR (with feedback)

Two instructions support the LFSR with feedback. They are:
A0 =BXORSHIFT(A0,A1,CC), and
Dreg_lo=CC = BXOR(A0,A1,CC)

Thefirst instruction provides a bitwise XOR of AO logically AND'ed with A1. Theresulting
intermediate bit is XOR'ed with the CC flag. Theresult of the operation isleft-shifted into the least
significant bit of AO following the operation. Thisoperationisillustrated in Figure 7-4. The CC
bit is not modified by this operation.

Figure 7-4. XOR of AO logical AND with A1l with Results Left-Shifted into LSB of AO

cc —»?—»%9—»?—» cee »%9—
A1[39] A1[38] A1[37] L2 A1[0]
A A
Left Shift
IN
AO[39] A0[38] AO[37] | ® ® @ A0[0] |« by1
following
XOR
After . reduction
Operation
A0[38] A0[37] AQ[36] LI 3) IN
A0[39:0]

The second instruction in this class performs a bitwise XOR of AO logically AND'ed with Al. The
resulting intermediate bit is XOR'ed with the CC flag. The result of the operation is placed into
both the CC flag and the least significant bit of the destination register.

This operationisillustrated in Figure 7-5.

Blackfin DSP Instruction Set Reference 7-13

Logical Operations ”’””"/’@&

Figure 7-5. XOR of AO Logical AND with A1 with Results Placed in CC Flag

7.5.6

7.5.7

7.5.8

7-14

and LSB of Destination Register

cC ——>» e oo —>» CC
IN" dreg_lo[0]

A1[39] A1[38] A1[37] LA 4 A1[0]

A A

A0[39] A0[38] AO[37) | ® ® @ A0[0]

After
Operation

dr{15] dr[14] dr{13] o 00 IN

dreg_lo[15:0]

The Accumulator A0 is not modified by this operation. The upper 15 bits of dreg_lo are
overwritten with zero, and dr[0] = IN.

Flags Affected

The following flags are affected by the Four Bit-wise Exclusive-OR instruction:

* CCisset or cleared according to the Functional Description for the BXOR and the non-
feedback version of the BXORSHIFT instruction. The feedback version of the BXORSHIFT
instruction affects no flags.

All other flags are unaffected.

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of this instruction can be issued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

Blackfin DSP Instruction Set Reference

Bma/(/?@ Logical Operations

7.5.9 Example
r0.l = cc = bxorshift (a0, rl) ;
r0.l = cc = bxor (a0, rl) ;

r0.l = cc = bxor (a0, al, cc) ;
a0 = bxorshift (a0, al, cc) ;

7.5.10 Also See

7.5.11 Special Applications

Linear feedback shift registers (LFSRs) can multiply and divide polynomials and are often used to
implement cyclical encoders and decoders.

LFSRsusethe set of Bit-wise XOR instructionsto compute bit XOR reduction from a state masked
by a polynomial.

Blackfin DSP Instruction Set Reference 7-15

Logical Operations ”’””"/’@&

7-16 Blackfin DSP Instruction Set Reference

BIT OPERATIONS

Instruction Summary

This chapter discusses the instructions that specify bit operations. Users can take advantage of
these instructions to set, clear, toggle, and test bits. They can also merge bit fields and save the
result, extract specific bits from a register, merge bit streams, and count the number of 1'sina

register.
8.1 BILCIEAN cioviiieiivieii ettt 8-2
8.2 BIESBL it 8-4
TG T = T oo o | = 8-6
S L 1= OSSO 8-8
85 Bt FIeld DEPOSIE ...ccovcviieiiieiisieiisieie sttt 8-10
8.6 Bit Field EXIraCtionccccoivieirieiieiieiiee et 8-15
8.7 BIt MUIIPIEX ettt et 8-20
8.8 ONES POPUIELioN COUNLceeveeeeeeeriesieriesieieseeeeeseeeeseesesse e sse e sreseesseseenees 8-24

Blackfin DSP Instruction Set Reference

8-1

Bit Operations ”’””"/’@&

8.1

8.1.1

8.1.2

8.1.3

8.1.4

8.1.5

8.1.6

8.1.7

8.1.8

Bit Clear

General Form

BITCLR (register, bit_position)

Syntax

BITCLR (Dreg, uimm5) ; Il (@

Syntax Terminology

Dreg: RO, ..., R7

uimmb5: 5-bit unsigned field, with arange of 0 through 31
Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

The Bit Clear instruction clears the bit designated by bit_position in the specified D-register. It
does not affect other bitsin that register.

Thebit_position range of valuesis 0— 31, where 0 indicates the L SB and 31, the M SB of the 32-bit
D-register.

Flags Affected

The Bit Clear instruction affects flags as follows:
e AZissetif result is zero; cleared if non-zero.
* AN issetif result is negative; cleared if non-negative.
* ACOiscleared.
* Viscleared.

All other flags are unaffected.

Required Mode

User & Supervisor

Parallel Issue

Thisinstruction cannot be issued in parallel with other instructions.

Blackfin DSP Instruction Set Reference

Bma/(/?@

8.1.9 Example

bitclr (r2, 3) ;

Bit Operations

/I clear bit 3 (the fourth bit from LSB) in R2

For example, if R2 contains OXFFFFFFFF before thisinstruction, it contains OXFFFFFFF7 after the

instruction.

8.1.10 Also See

Bit Set, Bit Test, Bit Toggle

8.1.11 Special Applications

Blackfin DSP Instruction Set Reference

8-3

Bit Operations ”’””"/’@&

8.2

8.2.1

8.2.2

8.2.3

8.2.4

8.2.5

8.2.6

8.2.7

Bit Set

General Form

BITSET (register, bit_position)

Syntax

BITSET (Dreg, uimm5) ; /1 (a)

Syntax Terminology

Dreg: RO, ..., R7

uimms5: 5-bit unsigned field, with arange of O through 31

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

The Bit Set instruction sets the bit designated by bit_position in the specified D-register. It does not
affect other bitsin the D-register.

The bit_position range of valuesis 0 — 31, where 0 indicates the L SB, and 31 indicates the MSB of
the 32-bit D-register.

Flags Affected

The Bit Set instruction sets the AN flag as follows:
* AZiscleared.
* AN issetif result is negative; cleared if non-negative.
* ACOiscleared.

¢ Viscleared.

All other flags are unaffected.

Required Mode

User & Supervisor

Blackfin DSP Instruction Set Reference

Bma/(/?@ Bit Operations

8.2.8 Parallel Issue

Thisinstruction cannot be issued in parallel with other instructions.

8.2.9 Example

bitset (12, 7) : /1 set bit 7 (the eighth bit from LSB) in R2

For example, if R2 contains 0x00000000 before this instruction, it contains 0x00000080 after the
instruction.

8.2.10 Also See

Bit Clear, Bit Test, Bit Toggle

8.2.11 Special Applications

Blackfin DSP Instruction Set Reference 8-5

Bit Operations ”’””"/’@&

8.3

8.3.1

8.3.2

8.3.3

8.3.4

8.3.5

8.3.6

8.3.7

Bit Toggle

General Form

BITTGL (register, bit_position)

Syntax

BITTGL (Dreg, uimm5) ; /I (a)

Syntax Terminology

Dreg: RO, ..., R7

uimms5: 5-bit unsigned field, with arange of O through 31

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

The Bit Toggleinstruction inverts the bit designated by bit_position in the specified D-register. The
instruction does not affect other bitsin the D-register.

The bit_position range of valuesis 0 — 31, where 0 indicates the L SB, and 31 indicates the MSB of
the 32-bit D-register.

Flags Affected

The Bit Toggle instruction affects flags as follows:
* AZissetif resultis zero; cleared if non-zero.
* AN issetif result is negative; cleared if non-negative.
* ACOiscleared.

¢ Viscleared.

All other flags are unaffected.

Required Mode

User & Supervisor

Blackfin DSP Instruction Set Reference

Bma/(/?@ Bit Operations

8.3.8 Parallel Issue

Thisinstruction cannot be issued in parallel with other instructions.

8.3.9 Example

bittgl (r2, 24) ; I toggle bit 24 (the 251 bit from LSB in R2

For example, if R2 contains OxF1FFFFFF before this instruction, it contains OxFOFFFFFF after the
instruction. Executing the instruction a second time causes the register to contain OXF1FFFFFF.

8.3.10 Also See

Bit Set, Bit Test, Bit Clear

8.3.11 Special Applications

Blackfin DSP Instruction Set Reference 8-7

Bit Operations ”’””"/’@&

8.4

8.4.1

8.4.2

8.4.3

8.4.4

8.4.5

8.4.6

8.4.7

Bit Test

General Form
CC =BITTST (register, bit_position)

CC=!BITTST (register, bit_position)

Syntax
CC=BITTST (Dreg, uimm5) ; /l set CCif bit=1 (a)
CC=!BITTST (Dreg, uimm5) ; [l set CCif bit=0 (a)

Syntax Terminology

Dreg: RO, ..., R7

uimm5: 5-bit unsigned field, with arange of O through 31

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

The Bit Test instruction sets or clears the CC bit, based on the bit designated by bit_position in the
specified D-register. One version tests whether the specified bit is set; the other tests whether the
bit is clear. The instruction does not affect other bitsin the D-register.

The bit_position range of valuesis 0 — 31, where 0 indicates the L SB, and 31 indicates the MSB of
the 32-bit D-register.

Flags Affected

Thisinstruction affects flags as follows:
* CCissetif thetested bit is 1; cleared otherwise.

All other flags are unaffected.

Required Mode

User & Supervisor

Blackfin DSP Instruction Set Reference

Bma/(/?@ Bit Operations

8.4.8 Parallel Issue

Thisinstruction cannot be issued in parallel with other instructions.

8.4.9 Example

cc = bittst (17, 15) ; Il test bit 15 TRUE in R7

For example, if R7 contains OXFFFFFFFF before thisinstruction, CCis set to 1, and R7 till
contains OXFFFFFFFF after the instruction.

cc =! bittst (r3, 0) ; / test bit O FALSE in R3

If R3 contains OXFFFFFFFF, thisinstruction clears CC to 0.

8.4.10 Also See

Bit Clear, Bit Set, Bit Toggle

8.4.11 Special Applications

Blackfin DSP Instruction Set Reference 8-9

Bit Operations ”’””"/’@&

8.5

8.5.1

8.5.2

8.5.3

8.5.4

8.5.5

8-10

Bit Field Deposit

General Form

dest_ reg = DEPOSIT (backgnd_reg, foregnd _reg)
dest_reg = DEPOSIT (backgnd_reg, foregnd_reg) (X)

Syntax
Dreg = DEPOSIT (Dreg, Dreg) ; /I no extension (b)
Dreg = DEPOSIT (Dreg, Dreg) (X) ; /I sign-extended (b)

Syntax Terminology

Dreg: RO, ..., R7

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Bit Field Deposit instruction merges the background bit field in backgnd _reg with the
foreground bit field in the upper half of foregnd_reg and saves the result into dest_reg. The user
determines the length of the foreground bit field and its position in the background field.

Option: Using the (X) syntax, you can sign-extend the deposited hit field. If you specify the
sign-extended syntax, the operation does not affect the dest_reg bitsthat are less
significant than the deposited bit field.

Theinput register bit field definitions appear bel ow.

backgnd_reg: | bbbb bbbb bbbb bbbb bbbb bbbb bbbb bbbb

where...
b = background bit field (32 bits)

Blackfin DSP Instruction Set Reference

Bma/(/?@

8.5.6

Bit Operations

Bl 16 15....ins 8 T, 0
foregnd_reg: | nnnn nnnn nnnn nnnn | XXXp Pppp xxxL LLLL
where...

n = foreground bit field (16 bits); the L field determines the actual
number of foreground bits used.

p = intended position of foreground bit field LSB in dest_reg (valid
range 0 — 31)
L = length of foreground bit field (valid range 0 — 16)

The operation writes the foreground bit field of length L over the background bit field with the
foreground L SB located at bit p of the background. See “Example,” below, for more.

Boundary Cases

Consider the following boundary cases:

* Unsigned syntax, L = 0: The architecture copies backgnd_reg contents without modification
into dest_reg. By definition, aforeground of zero length is transparent.

¢ Sign-extended, L = 0and p=0: This case loads 0x0000 0000 into dest_reg. Thesign of a
zero length, zero position foreground is zero; therefore, sign-extended is all zeros.

* Sign-extended, L = 0 and p # 0: The architecture copies the lower order bits of backgnd reg
below position p into dest_reg, then sign-extends that number. The foreground value has no
effect. For instance, if...

backgnd_reg = 0x0000 8123,
L =0, and

p=16,

then...

dest_reg = OXFFFF 8123.

In this example, the architecture copies bits 15:0 from backgnd_reg into dest_reg, then
sign-extends that number.

¢ Sign-extended, L + p > 32: Any foreground bits that fall outside the range 31.0 are truncated.

The Bit Field Deposit instruction does not modify the contents of the two source registers. One of
the source registers can also serve as dest_reg.

Flags Affected

Thisinstruction affects flags as follows:
* AZissetif result is zero; cleared if non-zero.
* AN issetif result is negative; cleared if non-negative.
* ACOiscleared.
* Viscleared.

All other flags are unaffected.

Blackfin DSP Instruction Set Reference 8-11

Bit Operations

8.5.7

8.5.8

8.5.9

8-12

Required Mode

User & Supervisor

Parallel Issue

Blﬂl.’l(/r@&

The 32-bit versions of this instruction can beissued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

Example

Bit Field Deposit Unsigned

r7 =deposit (r4, r3) ;

IF

R4:

...and...

R3:

Thenthe BIT FIELD
DEPOSIT (unsigned)
instruction produces...

R7:

R4:

...and...

R3:

31 0

1111 1111 1111 1121 1211 1111 1111 1111

(background bit field)

31 16 15 8 7 0

0000 0000 0000 0000 | Ox7 0x3
(foreground hit field) (position) (Iength)

31 7 0

1111 1111 1111 1111 1111 1100 O111 1111

31 0

1111 1111 1111 1121 1111 1111 1111 1111

(background bit field)

31 16 15 8 7 0
0000 0000 1111 1010 | OxD 0x9
(foreground hit field) (position) (Iength)

Blackfin DSP Instruction Set Reference

Bma/(/?@

Thenthe BIT FIELD
DEPOSIT (unsigned)
instruction produces...

Bit Operations

31 13 0

R7:

1111 1111 1101 1111 0101 1111 1111 1111

Bit Field Deposit Sign-Extended

r7 =deposit (r4, r3) (x) ;

/I sign-extended

IF 31 0
R4: | 1111 1111 1111 1111 1111 1111 1111 1111
(background bit field)
...and... 31 16 15 8 7 0
R3: | 0101 1010 0101 1010 | Ox7 0x3
(foreground bit field) (position) (length)
Thenthe BIT FIELD
DEPOSIT (sign-
extended) instruction
produces... 31 7 0
R7: | 0000 0000 0000 0000 0000 0001 0111 1111
IF 31 0
R4: | 1111 1111 1111 1111 1111 1111 1111 1111
(background bit field)
...and... 31 16 15 8 7 0
R3: | 0000 1001 1010 1100 | OxD 0x9
(foreground bit field) (position) (length)

Blackfin DSP Instruction Set Reference

8-13

Bit Operations ”’””"/’@&

ThentheBIT FIELD

DEPOSIT (sign-

extended) instruction

produces... 31 13 0

R7: | 1111 1111 1111 0101 1001 1111 1111 1111

8.5.10 Also See

Bit Field Extraction

8.5.11 Special Applications

Video image overlay algorithms.

8-14 Blackfin DSP Instruction Set Reference

Bma/(/?@ Bit Operations

8.6 Bit Field Extraction

8.6.1 General Form
dest_reg = EXTRACT (scene_reg, pattern_reg) (2)

dest reg = EXTRACT (scene_reg, pattern_reg) (X)

8.6.2 Syntax
Dreg = EXTRACT (Dreg, Dreg_lo) (2) ; /I zero-extended (b)
Dreg = EXTRACT (Dreg, Dreg lo) (X) ; /I sign-extended (b)

8.6.3 Syntax Terminology

Dreg: RO, ..., R7
Dreg_lo: RO.L, ..., R7.L

8.6.4 Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

8.6.5 Functional Description

The Bit Field Extraction instruction moves only specific bits from the scene_reg into the low-order
bits of the dest_reg. The user determines the length of the pattern bit field and its position in the
scene field.

The user has the choice of using the (X) syntax to perform sign-extend extraction or the (Z) syntax
to perform zero-extend extraction.

Theinput register bit field definitions appear bel ow.

Blackfin DSP Instruction Set Reference 8-15

Bit Operations ”’””"/’@&

8.6.6

8-16

31 0

SCene_reg. | SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS

where...

s = scene bit field (32 bits)

15 8 7 0

pattern_reg: XXXX Pppp XXXX LLLL

where...

p = position of pattern bit field LSB in scene reg
(valid range 0 — 31)

L = length of pattern bit field (valid range 0 — 31)

The operation reads the pattern bit field of length L from the scene bit field, with the pattern LSB
located at bit p of the scene. See “Example”, below, for more.

Boundary Case

If p+ L >32: Inthe zero-extended and sign-extended versions of the instruction, the architecture
assumesthat all bitsto the left of the scene_reg are zero. In such a case, the user istrying to access
more bits than the register actually contains. Consequently, the architecture fills any undefined bits
beyond the MSB of the scene reg with zeros.

The Bit Field Extraction instruction does not modify the contents of the two source registers. One
of the source registers can also serve asdest_reg.

Flags Affected

Thisinstruction affects flags as follows:
e AZissetif result is zero; cleared if non-zero.
* AN issetif result is negative; cleared if non-negative.
* ACOiscleared.
* Viscleared.

All other flags are unaffected.

Blackfin DSP Instruction Set Reference

Bma/(/?@

Bit Operations

The 32-bit versions of thisinstruction can beissued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallél Instructions.”

8.6.7 Required Mode

User & Supervisor
8.6.8 Parallel Issue
8.6.9 Example

Bit Field Extraction Unsigned

r7 = extract (r4, r3.1) (2); /1 zero-extended

IF 31 7 0
R4: | 1010 0101 1010 0101 1100 0011 1010 1010

(scene bit field)

...and... 31 16 15 8 7 0

R3: | XXXX XXXX XXXX XXXX | Ox7 0x4
(position) (length)

Then the Bit Field

Extraction (unsigned)

instruction produces... 31 0

R7: | 0000 0000 0000 OO0OO 0000 0000 0000 01112
IF 31 13 0
R4: | 1010 0101 1010 0101 1100 0011 1010 1010
(scene bit field)
...and... 31 16 15 8 7 0
R3: | XXXX XXXX XXXX XXXX | OxD 0x9

Blackfin DSP Instruction Set Reference

8-17

Bit Operations

Then the Bit Field
Extraction (unsigned)
instruction produces...

R7:

Blﬂl.’l(/r@&

(position) (Iength)

31 0

0000 0000 0000 0000 0000 0001 0010 1110

Bit Field Extraction Sign-Extended

r7 = extract (ré4,

R4:

...and...

R3:

Then the Bit Field
Extraction (sign-
extended) instruction

produces...

R7:
IF

R4:
...and...

R3:

8-18

r3.1) (x)

/1 sign-extended

31 7 0

1010 0101 1010 0101 1100 0011 1010 1010

(scene bit field)
31 16 15 8 7 0
XXXX XXXX XXXX XXXX | Ox7 0x4
(position) (Iength)
31 0

0000 0000 0000 0000 0000 0000 0000 0111

31 13 0

1010 0101 1010 0101 1100 0011 1010 1010

(scene bit field)
31 16 15 8 7 0
XXXX XXXX XXXX XXXX | OxD 0x9
(position) (Iength)

Blackfin DSP Instruction Set Reference

Bma/(/?@ Bit Operations

Then the Bit Field
Extraction (sign-
extended) instruction

31 0
produces...

R7: | 1111 1111 11211 1111 1111 1111 0010 1110

8.6.10 Also See

Bit Field Deposit

8.6.11 Special Applications

Video image pattern recognition and separation algorithms.

Blackfin DSP Instruction Set Reference 8-19

Bit Operations ”’””"/’@&

8.7

8.7.1

8.7.2

8.7.3

8.7.4

8.7.5

8-20

Bit Multiplex

General Form

BITMUX (source 1, source 0, AO) (ASR)

BITMUX (source 1, source 0, A0) (ASL)

Syntax
BITMUX (Dreg, Dreg, AO) (ASR) ; /I shift right, LSB is shifted out (b)
BITMUX (Dreg, Dreg, AO) (ASL) ; /I shift left, MSB is shifted out (b)

Syntax Terminology

Dreg: RO, ..., R7

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Bit Multiplex instruction merges bit streams. The instruction hastwo versions, Shift Right and
Shift Left. This instruction overwrites the contents of source 1 and source 0.
In the Shift Right version, the processor performs the following sequence.

1. Right shift Accumulator AO by one bit. Right shift the LSB of source 1 into the MSB of the
Accumulator.

2. Right shift Accumulator AO by one bit. Right shift the LSB of source 0 into the MSB of the
Accumulator.
In the Shift Left version, the processor performs the following sequence.

1. Left shift Accumulator AO by one bit. Left shift the MSB of source 0 into the LSB of the
Accumulator.

2. Left shift Accumulator AO by one bit. Left shift the MSB of source 1 into the LSB of the
Accumulator.

Source_1 and source_0 must not be the same D-register.

IF 39 3231 0
source_1: XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
source O: YYYY YYYY YYYY YYYY YYYY YYYY YYYY YYYY

Accumulator AQ: 7777 7777 7777 7777 7277 7777 7777 7277 7777 7Z7Z

Blackfin DSP Instruction Set Reference

Bma/(/?@ Bit Operations

aSHIFT RIGHT
instruction produces... 39 3231 0
source_1: OXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
(shifted right 1 place)
source_0O: Oyyy YYYY YYYY YYYY YYYY YYYY YYYY YYYY
(shifted right 1 place)
Accumulator AO: YXZZ 2Z7Z 7277 7777 7777 777Z 727Z 7777 7ZZZ ZZZZ
(shifted right 2 places)
aSHIFT LEFT
instruction produces. .. 39 3231 0
source_1: XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXO
(shifted left 1 place)
source_0: YYYY YYYY YYYY YYYY YYYY YYYY YYYY YyyO
(shifted left 1 place)
Accumulator AO: 2777 7777 7777 7777 7777 7777 7777 7777 7777 ZZYX
(shifted left 2 places)

8.7.6 Flags Affected

None

8.7.7 Required Mode

User & Supervisor

8.7.8 Parallel Issue

The 32-bit versions of thisinstruction can beissued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

8.7.9 Example

bitmux (r2, r3, a0) (asr) ; /I right shift

IF 31 0

R2: | 1010 0101 1010 0101 1100 0011 1010 1010

Blackfin DSP Instruction Set Reference 8-21

Bit Operations

...and...

R3:

...and... 39

31

Blﬂl.’l(/r@&

0

1100 0011 1010 1010 1010 0101 1010 0101

0

AO:

0000 0000 0000 0000 0000 0000 0000 0000 0000 0111

thenthe SHIFT RIGHT
instruction produces...

R2:
...and...

R3:
...and... 39

31

0101 0010 1101 0010 1110 0001 1101 0101

31

0

0110 0001 1101 0101 0101 0010 1101 0010

0

AO:

1000 0000 0000 0000 0000 0000 0000 0000 0000 0001

bitmux (r3, r2, a0) (ad) ;

IF

R3:
...and...

R2:
...and... 39

Il 1eft shift

31 0

1010 0101 1010 0101 1100 0011 1010 1010

31

0

1100 0011 1010 1010 1010 0101 1010 0101

0

AO:

1110 0000 0000 0000 0000 0000 0000 0000 0000 0111

8-22

Blackfin DSP Instruction Set Reference

Bma/(/?@

Bit Operations

then the SHIFT LEFT
instruction produces... 31 0

...and...

...and...

AO:

8.7.10 Also See

R3: | 0100 1011 0100 1011 1000 0111 0101 0100

31 0

R2: | 1000 0111 0101 0101 0100 1011 0100 1010

39 0

1000 0000 0000 0000 0000 0000 0000 0000 0001 1111

8.7.11 Special Applications

Use the Bit Multiplex instruction for convolutional encoder agorithms.

Blackfin DSP Instruction Set Reference

8-23

Bit Operations ”’””"/’@&

8.8

8.8.1

8.8.2

8.8.3

8.8.4

8.8.5

8.8.6

8.8.7

8.8.8

8-24

Ones Population Count

General Form

dest_ reg = ONES src_reg

Syntax

Dreg_lo= ONES Dreg ; I (b)

Syntax Terminology

Dreg: RO, ..., R7
Dreg_lo: RO.L, ..., R7.L

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Ones Population Count instruction loads the number of 1's contained in the src_reg into the
lower half of thedest_reg.

The range of possible values loaded into dest_regis0—32.

The dest_reg and src_reg can be the same D-register. Otherwise, the Ones Population Count
instruction does not modify the contents of src_reg.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of thisinstruction can beissued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

Blackfin DSP Instruction Set Reference

Bma/(/?@ Bit Operations

8.8.9 Example

r3.l =onesr7;
If R7 contains OXA5A5A5A5, R3.L contains the value 16, or 0x0010.

If R7 contains 0x00000081, R3.L contains the value 2, or 0x0002.
8.8.10 Also See

8.8.11 Special Applications

Thisinstruction can be used for software parity testing.

Blackfin DSP Instruction Set Reference 8-25

Bit Operations ”’””"/’@&

8-26 Blackfin DSP Instruction Set Reference

SHIFT / ROTATE OPERATIONS 9

Instruction Summary

This chapter discusses the instructions that manipulate bit operations. Users can take advantage of
these instructions to perform logical and arithmetic shifts, combine addition operations with shifts,
and rotate a registered number through the CC hit.

9.1 Add With ShIft oo 9-2
9.2 ShIft Wi AT .ooeeieiiiee s 9-4
9.3 AnthmEtiC Shift ..o s 9-6
9.4 LOGICAl SNift oo 9-11
LSS = (0 = (=PTSRS 9-16

Blackfin DSP Instruction Set Reference 9-1

Shift / Rotate Operations ”’””"/’@&

9.1

9.1.1

9.1.2

9.1.3

9.1.4

9.1.5

Add with Shift

General Form

dest_pntr = (dest_pntr + src_reg) << 1
dest_pntr = (dest_pntr + src_reg) << 2
dest reg = (dest_reg + src_reg) << 1

dest_reg = (dest_reg + src_reg) << 2

Syntax

POINTER OPERATIONS

Preg=(Preg+Preg) <<1; /l dest_reg = (dest_reg + src_reg) x 2 (@)
Preg = (Preg+ Preg) << 2; // dest_reg = (dest_reg + src_reg) x4 (@)
DATA OPERATIONS

Dreg = (Dreg + Dreg) << 1; /l dest_reg = (dest_reg + src_reg) x 2 (@)
Dreg = (Dreg + Dreg) << 2; /l dest_reg = (dest_reg + src_reg) x4 (@)

Syntax Terminology

Preg: PO, ..., P5
Dreg: RO, ..., R7

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

The Add with Shift instruction combines an addition operation with a one- or two-place logical
shift left. Of course, aleft shift accomplishes ax2 multiplication on sign-extended numbers.
Saturation is not supported.

The Add with Shift instruction does not intrinsically modify valuesthat are strictly input. However,
dest_reg serves as an input as well asthe result, so dest_reg isintrinsically modified.

Blackfin DSP Instruction Set Reference

Bma/(/?@

9.1.6

9.1.7
9.1.8

9.1.9

9.1.10

9.1.11

Shift / Rotate Operations

Flags Affected

The D-register versions of thisinstruction affects flags as follows:
* AZissetif result is zero; cleared if non-zero.
* AN issetif result is negative; cleared if non-negative.
* Vissetif result overflows; cleared if no overflow.
* VSissetif V isset; unaffected otherwise.

All other flags are unaffected.

The P-register versions of thisinstruction do not affect any flags.

Required Mode

User & Supervisor

Parallel Issue

Thisinstruction cannot be issued in parallel with other instructions.

Example

p3 = (p3+p2)<<l; /Ip3=(p3+p2)* 2
p3 = (p3+p2)<<2; /Ip3=(p3+p2)*4
r3=(r3+r2)<<1; Hr3=(3+r2)* 2
r3=(r3+r2)<<2; r3=(3+r2)* 4
Also See

Shift with Add, Multiply (Modulo 232), Logical Shift, Arithmetic Shift, Add

Special Applications

Blackfin DSP Instruction Set Reference 9-3

Shift / Rotate Operations ”’””"/’@&

9.2

9.2.1

9.2.2

9.2.3

9.24

9.2.5

9.2.6

9.2.7

9.2.8

Shift with Add

General Form

dest_pntr = adder_pntr + (src_pntr << 1)
dest_pntr = adder_pntr + (src_pntr << 2)

Syntax
Preg = Preg + (Preg<<1); Il adder_pntr + (src_pntrx 2) (&)
Preg = Preg + (Preg<<2); /1 adder_pntr + (src_pntr x 4) (a)

Syntax Terminology

Preg: PO, ..., P5

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

The Shift with Add instruction combines a one- or two-place logical shift left with an addition
operation.

Theinstruction provides a shift-then-add method that supports a rudimentary multiplier sequence
useful for array pointer manipulation.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

Thisinstruction cannot be issued in parallel with other instructions.

Blackfin DSP Instruction Set Reference

Bma/(/?@ Shift / Rotate Operations

9.2.9 Example
p3 = pO+(p3<<1); II'p3=(p3* 2) +p0
p3 = pO+(p3<<2) ; /I'p3=(p3* 4) +p0

9.2.10 Also See

Add with Shift, Multiply (Modulo 232), Logical Shift, Arithmetic Shift, Add

9.2.11 Special Applications

Blackfin DSP Instruction Set Reference 9-5

Shift / Rotate Operations ”’””"/’@&

9.3 Arithmetic Shift

9.3.1 General Form
dest_reg >>>= shift_magnitude
dest_reg = src_reg >>> shift_magnitude (opt_sat)
dest_reg = src_reg << shift_magnitude (S)
accumulator = accumulator >>> shift_magnitude
dest reg= ASHIFT src_reg BY shift_ magnitude (opt_sat)

accumulator = ASHIFT accumulator BY shift_magnitude

9.3.2 Syntax

CONSTANT SHIFT MAGNITUDE

Dreg >>>=uimm5 ; /I arithmetic right shift (a)
Dreg <<= uimm5; I/ logical left shift (a)
Dreg_lo_hi = Dreg_lo_hi >>>uimm4 ; /I arithmetic right shift (b)
Dreg_lo_hi =Dreg_lo_hi <<uimm4 (S) ; /I arithmetic left shift (b)
Dreg = Dreg >>> uimm5 ; /I arithmetic right shift b)
Dreg = Dreg << uimmb5 (S) ; /I arithmetic left shift (b)
A0 =A0>>>uimm5; /[arithmetic right shift (b)
AO=A0<<uimms; /I logical left shift (b)
Al=Al1>>>uimm5; /I arithmetic right shift (b)
Al=Al<<uimms ; Il'ogical left shift (b)

REGISTERED SHIFT MAGNITUDE

Dreg >>>= Dreg ; /I arithmetic right shift (a)
Dreg <<= Dreg; /'logical left shift (a)
Dreg_lo_hi = ASHIFT Dreg_lo_hi BY Dreg_lo (opt_sat) ; // arithmetic right shift (b)

Dreg = ASHIFT Dreg BY Dreg_lo (opt_sat) ; /I arithmetic right shift (b)
AO=ASHIFT AOBY Dreg lo; /I arithmetic right shift (b)
A1=ASHIFT A1BY Dreg_lo; /I arithmetic right shift (b)

9-6 Blackfin DSP Instruction Set Reference

Bma/(/?@

9.3.3

9.3.4

9.35

Note:

Shift / Rotate Operations

Syntax Terminology

Dreg: RO, ..., R7

Dreg_lo hi: RO.L, ..., R7.L,ROH, ..., R7.H

Dreg_lo: RO.L, ..., R7.L

uimm4: 4-bit unsigned field, with arange of 0 through 15
uimmb5: 5-hit unsigned field, with arange of 0 through 31

opt_sat: optiona “(S)” (without the quotes) to invoke saturation of the result. Not optional on
versions that show “(S)” in the syntax.

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length. Comment (b) identifies 32-bit
instruction length.

Functional Description

The Arithmetic Shift instruction shifts a registered number a specified distance and direction while
preserving the sign of the original number. The sign bit value back-fills the left-most bit positions
vacated by the arithmetic right shift.

Specific versions of arithmetic left shift are supported, too. Arithmetic left shift saturates the result
if the value is shifted too far. A left shift that would otherwise lose non-sign bits off the left-hand
side saturates to the maximum positive or negative value instead.

The“ASHIFT” versions of thisinstruction support two modes:

1. default -- arithmetic right shifts and logical left shifts. Logical left shifts do not guarantee sign
bit preservation. The “ASHIFT” versions automatically select arithmetic and logical shift
modes based on the sign of the shift_magnitude.

2. saturation mode -- arithmetic right and left shifts that saturate if the value is shifted left too far.
The">>>=" and “>>>" versions of thisinstruction supports only arithmetic right shifts. If left

shifts are desired, the programmer must explicitly use arithmetic “ <<* (saturating) or logical “<<*
(non-saturating) instructions.

Logical left shift instructions are duplicated in the Syntax section for programmer convenience.
See the Logical Shift instruction for details on those operations.

The Arithmetic Shift instruction supports 16-bit and 32-bit instruction length.
* The“>>>=" syntax instruction is 16-bitsin length, allowing for smaller code at the expense of
flexibility.

* The“>>>" “<<" and “ASHIFT” syntax instructions are 32-bitsin length, providing a
separate source and destination register, alternative data sizes, and parallel issue with Load/
Storeinstructions.

Blackfin DSP Instruction Set Reference 9-7

Shift / Rotate Operations ”’””"/’@&

9.3.6

Both syntaxes support constant and registered shift magnitudes.
Table 9-1. Arithmetic Shifts

Syntax Description

The value in dest_reg is right-shifted by the number of places specified by
shift_magnitude. The data size is always 32 bits long. The entire 32 bits of the
shift_magnitude determine the shift value. Shift magnitudes larger than Ox1F result
in either 0x00000000 (when the input value is positive) or OxXFFFFFFFF (when the
input value is negative).

Only right shifting is supported in this syntax; there is no equivalent “<<<="
arithmetic left shift syntax. However, logical left shift is supported. See the Logical
Shift instruction.

“sss=n

The value in src_reg is shifted by the number of places specified in
shift_magnitude, and the result is stored into dest_reg.
“5557 “e<t and

“ASHIFT” The ASHIFT versions can shift 32-bit Dreg and 40-bit Accumulator registers by up
to -32 — 31 places; the distance is determined by the lower 6 bits (sign extended) of
the shift_magnitude.

For the ASHIFT versions, the sign of the shift magnitude determines the direction of the shift.
¢ Positive shift magnitudes produce LOGICAL LEFT shifts.
* Negative shift magnitudes produce ARITHMETIC RIGHT shifts.

In essence, the magnitude is the power of 2 multiplied by the src_reg number. Positive magnitudes
cause multiplication (N x 2") whereas negative magnitudes produce division (N x 2™ or N/ 2").

The dest_reg and src_reg can be a 16-, 32-, or 40-bit register. Some versions of the Arithmetic
Shift instruction support optional saturation.

See Section 1.5.5, “ Saturation,” on page 1-6 for a description of saturation behavior.

For 16-hit src_reg, valid shift magnitudes are —16 through +15, zero included. For 32- and 40-bit
src_reg, valid shift magnitudes are —32 through +31, zero included. The Arithmetic Shift
instruction masks and ignores bits that are more significant than those allowed.

The D-register versions of thisinstruction shift 16 or 32 bits for half-word and word registers,
respectively. The Accumulator versions shift all 40 bits of those registers.

The D-register versions of this instruction do not implicitly modify the src_reg values. Optionally,
dest_reg can be the same D-register as src_reg. So doing explicitly modifies the source register.

The Accumulator versions always modify the Accumulator source value.

Options
Option (S) invokes saturation of the result.

In the default case — without the saturation option — numbers can be left-shifted so far that all the
sign bits overflow and are lost. However, when the saturation option is enabled, aleft shift that
would otherwise shift non-sign bits off the left-hand side saturates to the maximum positive or
negative value instead. Consequently, with saturation enabled, the result always keeps the same
sign as the original number.

See Section 1.5.5, “ Saturation,” on page 1-6 for a description of saturation behavior.

Blackfin DSP Instruction Set Reference

Bma/(/?@

9.3.7

9.3.8

9.3.9

Shift / Rotate Operations

Flags Affected

The versions of thisinstruction that send results to a Dreg set flags as follows:
* AZissetif result is zero; cleared if non-zero.
* AN issetif result is negative; cleared if non-negative.
* Vissetif result overflows; cleared if no overflow.
* VSissetif V isset; unaffected otherwise.

All other flags are unaffected.

The versions of thisinstruction that send results to a Accumulator AO set flags as follows:
* AZissetif result is zero; cleared if non-zero.
* AN issetif result is negative; cleared if non-negative.
* AVOissetif resultis zero; cleared if non-zero.
* AVOSissetif AVOis set; unaffected otherwise.

All other flags are unaffected.

The versions of thisinstruction that send resultsto a Accumulator A1 set flags as follows:
* AZissetif result is zero; cleared if non-zero.
* AN issetif result is negative; cleared if non-negative.
* AVlissetif resultiszero; cleared if non-zero.
* AVI1Sissetif AV1isset; unaffected otherwise.

All other flags are unaffected.

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of thisinstruction can beissued in parallel with specific other 16-hit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

The 16-bit versions of thisinstruction cannot be issued in parallel with other instructions.

Blackfin DSP Instruction Set Reference 9-9

Shift / Rotate Operations

9.3.10

9.3.11

9.3.12

9-10

Example
ro>>>=19 ;

r3.1=r0.h>>>7;
r3.h=r0.h>>>5;

r3.1 =r0.h>>>7(s);
r4=r2>>>20;
AO0O=A0>>1;
ro>>>=r2;

r3.l=r0h<<12(9);
5 =r2 << 24(S) ;

r3. =ashift rO.h by r7.1 ;
r3.h = ashift rO.l by r7.1 ;
r3.h = ashift rO.h by r7.1 ;
r3. =ashift rO.l by r7.l ;

r3.| =ashiftro.h by r7.1(s) ;
r3.h = ashift rO.l by r7.1(s) ;
r3.h = ashift rO.h by r7.I(s) ;
r3.I = ashift rO.l by r7.1 (s) ;

r4 = ashiftr2 by r7.1 ;

r4 =ashiftr2by r7.l (s) ;
AO=ashift AOby r7.l ;
Al=ashift Albyr7.l;

r3.h=r0.h>>>4;

Also See

Blﬂl.’l(/r@&

[* 16-bit instruction length arithmetic

right shift */

/I arithmetic right shift, half-word

[* same as above; any combination of

upper and lower half-words is supported */
/I arithmetic right shift, half-word, saturated
/I arithmetic right shift, word

/I arithmetic right shift, Accumulator

/* 16-bit instruction length arithmetic

right shift */

Il arithmetic left shift
/I arithmetic left shift

/I shift, half-word

/1 shift, half-word, saturated
/1 shift, half-word, saturated

/I shift, word

/I shift, word, saturated
/I shift, Accumulator

/I shift, Accumulator

/['1f r0.h = -64, then performing . . .
/... producesr3.h = -4, preserving the sign

Vector Arithmetic Shift, Vector Logical Shift, Logical Shift, Shift with Add, Rotate

Special Applications

Typicaly, use Arithmetic shifting to multiply, divide, and normalize signed numbers.

Blackfin DSP Instruction Set Reference

Bma/(/?@ Shift / Rotate Operations

9.4 Logical Shift

94.1 General Form

dest_pntr = src_pntr >> 1

dest_pntr = src_pntr >> 2

dest_pntr = src_pntr << 1

dest_pntr = src_pntr << 2

dest_reg >>= shift_magnitude
dest_reg <<= shift_magnitude
dest_reg = src_reg >> shift_magnitude
dest_reg = src_reg << shift_magnitude

dest reg = LSHIFT src_reg BY shift_magnitude

9.4.2 Syntax

POINTER SHIFT, FIXED MAGNITUDE

Preg = Preg>>1; // right shift by 1 bit (a)
Preg = Preg >> 2 ; // right shift by 2 bit (a)
Preg=Preg<<1; I/ |eft shift by 1 bit (a)
Preg = Preg << 2; I/ 1eft shift by 2 bit (a)

DATA SHIFT, CONSTANT SHIFT MAGNITUDE

Dreg >>= uimm5; /I right shift (a)
Dreg <<= uimm5; /I eft shift (a)
Dreg_lo_hi =Dreg_lo_hi >>uimm4 ; /I right shift (b)
Dreg_lo_hi =Dreg_lo_hi <<uimm4 ; /1 eft shift (b)
Dreg = Dreg >> uimm5 /I right shift (b)
Dreg = Dreg << uimm5 ; /1| eft shift (b)
AO=A0>>uimm5 ; /l right shift (b)
AO=A0<<Uuimm5; /1 1 eft shift (b)
Al=Al<<uimms ; /1 ft shift (b)

Blackfin DSP Instruction Set Reference 9-11

Shift / Rotate Operations

9.4.3

9.4.4

9.4.5

9-12

Al=Al>>uimm5; /I right shift (b)
DATA SHIFT, REGISTERED SHIFT MAGNITUDE

Dreg >>= Dreg ; /I right shift (a)
Dreg <<= Dreg; /1 1 eft shift (a)
Dreg_lo _hi = LSHIFT Dreg_lo_hi BY Dreg_lo; //(b)

Dreg = LSHIFT Dreg BY Dreg_lo; I (b)
AO=LSHIFT AOBY Dreg_lo; I (b)
Al=LSHIFT A1BY Dreg_lo ; I (b)

Syntax Terminology

Dreg: RO, ..., R7

Dreg_lo: RO.L, ..., R7.L

Dreg_lo_hi: ROL, ..., R7.L, RO.H, ..., R7.H

Preg: PO, ..., P5

uimm4: 4-bit unsigned field, with arange of 0 through 15

uimm5: 5-bit unsigned field, with arange of O through 31

Instruction Length

Blﬂl.’l(/r@&

In the syntax, comment (@) identifies 16-bit instruction length. Comment (b) identifies 32-bit

instruction length.

Functional Description

The Logical Shift instruction logically shifts a registered number a specified distance and direction.

Logical shifts discard any bits shifted out of the register and backfill vacated bits with zeros.

Four versions of the Logical Shift instruction support pointer shifting. The instruction does not
implicitly modify theinput src_pntr value. For the P-register versions of thisinstruction, dest_pntr
can be the same P-register as src_pntr. Doing so explicitly modifies the source register.

Therest of this description applies to the data shift versions of this instruction relating to D-

registers and Accumulators.

The Logical Shift instruction supports 16-bit and 32-bit instruction length.

* The“>>=" and “<<=" syntax instruction is 16-bitsin length, allowing for smaller code at the

expense of flexibility.

Blackfin DSP Instruction Set Reference

Bma/(/?@ Shift / Rotate Operations

* The">>", “<<” and “LSHIFT” syntax instruction is 32-bitsin length, providing a separate
source and destination register, aternative data sizes, and parallel issue with Load/Store
instructions.

Both syntaxes support constant and registered shift magnitudes.
Table 9-2. Logical Shifts

Syntax Description

The value in dest_reg is shifted by the number of places specified by
shift_magnitude. The data size is always 32 bits long. The entire 32 bits of the

>>=" AND es= shift_magnitude determine the shift value. Shift magnitudes larger than Ox1F
produce a 0x00000000 result.
The value in src_reg is shifted by the number of places specified in
oo gt shift_magnitude, and the result is stored into dest_reg.
and “LSHIFT" The LSHIFT versions can shift 32-bit Dreg and 40-bit Accumulator registers by up

to -32 — 31 places; the distance is determined by the lower 6 bits (sign extended) of
the shift_magnitude.

For the LSHIFT version, the sign of the shift magnitude determines the direction of the shift.
* Positive shift magnitudes produce LEFT shifts.
¢ Negative shift magnitudes produce RIGHT shifts.

The dest_reg and src_reg can be a 16-, 32-, or 40-bit register.

For the LSHIFT instruction, the shift magnitude is the lower 6 bits of the Dreg_lo, sign extended.
The Dreg >>= Dreg and Dreg <<= Dreg instructions use the entire 32-bits of magnitude.

The D-register versions of thisinstruction shift 16 or 32 bits for half-word and word registers,
respectively. The Accumulator versions shift all 40 bits of those registers.

40-bit Accumulator values can be shifted by up to -32 to +31 bit places.

Shift magnitudes that exceed the size of the destination register produce all zeros in the result. For
example, shifting a 16-bit register value by 20 bit places (a valid operation) produces 0x00000000.

A shift magnitude of zero performs no shift operation at all.

The D-register versions of thisinstruction do not implicitly modify the src_reg values. Optionaly,
dest_reg can be the same D-register as src_reg. Doing so explicitly modifies the source register.

9.4.6 Flags Affected

The P-register versions of thisinstruction do not affect any flags.

The versions of thisinstruction that send results to a Dreg set flags as follows:
* AZissetif resultis zero; cleared if non-zero.
* AN issetif result is negative; cleared if non-negative.
* Viscleared.

All other flags are unaffected.

Blackfin DSP Instruction Set Reference 9-13

Shift / Rotate Operations

9.4.7

9.4.8

9.4.9

9-14

Blﬂl.’l(/r@&

The versions of thisinstruction that send results to a Accumulator AO set flags as follows:

e AZissetif resultiszero; cleared if non-zero.

* AN issetif result is negative; cleared if non-negative.

* AVOiscleared.

All other flags are unaffected.

The versions of thisinstruction that send results to a Accumulator A1 set flags as follows:

e AZissetif resultiszero; cleared if non-zero.

* AN issetif result is negative; cleared if non-negative.

* AVliscleared.

All other flags are unaffected.

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of this instruction can beissued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

The 16-bit versions of this instruction cannot be issued in parallel with other instructions.

Example

p3=p2>>1 ;
p3=p3>>2;
pd=p5<<1;
pO=pl<<2;
r3>>=17;
r3<<=17;

r3.1 =r0.>>4;
r3.1=r0.h>>4;

r3h=r0.l<<12;
r3.h=r0.nh << 14;

r3=r6>>4 ;
r3=r6<<4 ;
aAD=ad>7 ;
al=al>>25 ;
aAb=a0<<7 ;
al=al<< 14 ;
r3>>=r0;
r3<<=rl;

/I pointer right shift by 1

/I pointer right shift by 2

/I pointer left shift by 1

/I pointer |eft shift by 2

/I dataright shift

/I data | eft shift

/I dataright shift, half-word register
[* same as above; half-word register
combinations are arbitrary */

/I data left shift, half-word register
[* same as above; half-word register
combinations are arbitrary */

/I right shift, 32-bit word

/I 1 eft shift, 32-bit word

/I Accumulator right shift

/I Accumulator right shift

/I Accumulator left shift

/I Accumulator left shift

/I dataright shift

/I data | eft shift

Blackfin DSP Instruction Set Reference

Bma/(/?@ Shift / Rotate Operations

r3. = Ishift rO.l by r2. ; /I shift direction controlled by sign of R2.L
r3.h =Ishift r0.l by r2.l;
a0 =Ishifta0 by r7.l ;
al =Ishift al by r7.;
/I'1f r0.h = -64 (or OxFFCO0), then performing . . .
r3h=r0.h>>4; /* ... produces r3.h = OxOFFC (or 4092), losing
thesign*/

9.4.10 Also See

Arithmetic Shift, Rotate, Shift with Add, Vector Arithmetic Shift, Vector Logical Shift

9.4.11 Special Applications

Blackfin DSP Instruction Set Reference 9-15

Shift / Rotate Operations ”’””"/’@&

9.5

951

9.5.2

9.5.3

954

9.5.5

9-16

Rotate

General Form
dest_reg = ROT src_reg BY rotate_ magnitude

accumulator_new = ROT accumulator_old BY rotate_magnitude

Syntax

CONSTANT ROTATE MAGNITUDE
Dreg = ROT Dreg BY imm6; // (b)
AO0=ROT AOBY imm6 ; I (b)
A1=ROT A1BY immé ; 1 (b)
REGISTERED ROTATE MAGNITUDE
Dreg = ROT Dreg BY Dreg lo; // (b)
AO0=ROT AOBY Dreg_lo ; I (b)
A1=ROTA1BY Dreg lo; //(b)

Syntax Terminology

Dreg: RO, ..., R7
imme6: 6-bit signed field, with arange of -32 through 31

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Rotate instruction rotates a registered number through the CC bit a specified distance and
direction. The CC bit is in the rotate chain. Consequently, the first value rotated into the register is
theinitial value of the CC bit.

Rotation shifts al the bits either right or left. Each bit that rotates out of the register (the LSB for

rotate right or the MSB for rotate |eft) is stored in the CC hit, and the CC hit is stored into the bit
vacated by the rotate on the opposite end of the register.

Blackfin DSP Instruction Set Reference

Bma/(/?@

Blackfin DSP Instruction Set Reference

D-register:
CC hit:

Rotate left 1 bit
D-register:
CC hit:

Rotate left 1 bit again
D-register:
CC hit:

D-register:
CC hit:

Rotate right 1 bit
D-register:
CC hit:

Rotateright 1 bit again
D-register:
CC hit:

31

Shift / Rotate Operations

1010

1111

0000 0000 0000 0000

0001

1010

31

N (“1” or“0")

0101

1110

0000 0000 0000 0000

0011

010N

31

1

1011

1100

0000 0000 0000 0000

0110

10N1

31

0

1010

1111

0000 0000 0000 0000

0001

1010

31

N (u 111 or “ On)

N101

0111

1000 0000 0000 0000

0000

1101

31

0

ON10

1011

1100 0000 0000 0000

0000

0110

1

¢ Positive rotate magnitudes produce LEFT rotations.

¢ Negative rotate magnitudes produce RIGHT rotations.

ignores bits that are more significant than those allowed.

The sign of the rotate magnitude determines the direction of the rotation:

Valid rotate magnitudes are —32 through +31, zero included. The Rotate instruction masks and

Shift / Rotate Operations ”’””"/’@&

9.5.6

9.5.7

9.5.8

9.5.9

9.5.10

9.5.11

9-18

Unlike shift operations, Rotate loses no bits of the source register data. Instead, it rearranges them
inacircular fashion. However, the last bit rotated out of the register remainsin the CC bit, and is
not returned to the register. Because rotates are performed all at once and not one bit at atime,
rotating one direction or another regardless of the rotate magnitude produces no advantage. For
instance, arotate right by two bitsis no more efficient than a rotate left by 30 bits. Both methods
produce identical resultsinidentical execution time.

The D-register versions of thisinstruction rotate all 32 bits. The Accumulator versionsrotate all 40
bits of those registers.

The D-register versions of this instruction do not implicitly modify the src_reg values. Optionally,
dest_reg can be the same D-register as src_reg. Doing so explicitly modifies the source register.

Flags Affected

The following flags are affected by the Rotate instruction:
* CC containsthe latest value shifted into it.

All other flags are unaffected.

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of this instruction can beissued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

Example

rd=rotrlby8 ; Il rotate | eft
rd=rotrlby-5; // rotate right

ad=rot adby 22 ; I/ rotate Accumulator left
al=rot alby-31 ; I/ rotate Accumul ator right
rd=rotrlbyr2l;

a0=rot aObyr3l;

al=rot albyr7l;

Also See

Arithmetic Shift, Logical Shift

Special Applications

Blackfin DSP Instruction Set Reference

ARITHMETIC OPERATIONS

10

Instruction Summary

This chapter discusses the instructions that specify arithmetic operations. Users can take advantage
of these instructions to add, subtract, divide, and multiply, calculate and store absol ute val ues,

detect exponents, round, saturate, and return the number of sign bits.

10.1 ADSOIULE VEIUE ..ottt e st
L0.2 A ittt ere s
10.3 Add IMMEIALE ..o e
10.4 DiVide PriMItIVEocoviiiiiieiee e e
10.5 EXPONENnt DELECHION ...cvcvveeeeieeeecete e se e et aens
O I |V = (] 41U o SRRSO
T10.7 MINIMUM Lottt b b e et e e et ne e
10.8 MOdify —DECIEMEN ..ottt e
10,9 MOdify —INCIEMENT ...ceeeeeeeeeeee et st
0 50O TR |V o) 2

10.11 Multiply and Multiply-Accumulate to Accumulator
10.12 Multiply and Multiply-Accumulate to Half-Register
10.13 Multiply and Multiply-Accumulate to Data Register
1014 MUItiply (MOAUIO 2%2) ...oooooeeeeeeeee e
10.15 Negate (TWo's ComMplEMENL)oovcveeeicieeeee e
10.16 RoUNd HAIf-WOTAcoieieereiiieiecreeseees s
10.17 ROUNA = 12 Bil .eeeeciieirereereieesre s
10.18 ROUNA — 20 Bt ..ecoieeiieiiiiinieieesisie et
T0.19 SBIUIELEoeeeeeiiiiieeee ettt et bt sre e e sbe e seesbennnesneen
10.20 SION Bt it b e
10.21 SUDEFBCE ..ot
10.22 Subtract IMMETIBLEcoveveeeereeieerrer e

Blackfin DSP Instruction Set Reference

10-1

Arithmetic Operations ”’””"/’@&

10.1

10.1.1

10.1.2

10.1.3

10.1.4

10.1.5

10.1.6

10-2

Absolute Value

General Form

dest reg=ABSsrc_reg

Syntax

A0=ABSAOQ; 11 (b)
AO0=ABSAL; 1l (b)
Al=ABSAOQ; 11 (b)
Al1=ABSAL; 11 (b)
Al1=ABSA1,A0=ABSAQ; 11 (b)
Dreg = ABSDreg; Il (b)

Syntax Terminology

Dreg: RO, ..., R7

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description
The Absolute Value instruction cal cul ates the absol ute value of a 32-bit register and storesit into a
32-hit dest_reg according to the following rules:

¢ If theinput value is positive or zero, copy it unmodified to the destination.

¢ If theinput value is negative, subtract it from zero and store the result in the destination.

The ABS operation can also be performed on both Accumulators by a single instruction.

Flags Affected

Thisinstruction affects flags as follows:

* AZissetif resultis zero; cleared if non-zero. In the case of two simultaneous operations, AZ
represents the logical “OR” of the two.

e AN iscleared.

* Vissetif the maximum negative value is saturated to the maximum positive value and the
dest_regisaDreg; cleared if no saturation.

Blackfin DSP Instruction Set Reference

Bma/(/?@ Arithmetic Operations

VSissetif V isset; unaffected otherwise.

AVOissetif result overflows and the dest_reg is AO; cleared if no overflow.
AVOSisset if AVO is set; unaffected otherwise.
AV1issetif result overflows and the dest_regis Al; cleared if no overflow.
* AVI1Sissetif AV1isset; unaffected otherwise.

All other flags are unaffected.

10.1.7 Required Mode

User & Supervisor

10.1.8 Parallel Issue

The 32-bit versions of thisinstruction can beissued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

10.1.9 Example
a0=absal;
ad=absal ;
al=absa0;
al=absal;
al = absal, ad=abs a0 ;
r3=absrl;

10.1.10 Also See

Vector Absolute Value (in “Vector Operations’ chapter)

10.1.11 Special Applications

None

Blackfin DSP Instruction Set Reference 10-3

Arithmetic Operations ”’””"/’@&

10.2 Add

10.2.1 General Form

dest reg=src reg 1+ src_reg 2

10.2.2 Syntax

POINTER REGISTER ADDITION
Preg = Preg + Preg ; I (@)

32-BIT OPERANDS, 32-BIT RESULT

Dreg = Dreg + Dreg ; [* no saturation support but
shorter instruction length (a) */

Dreg = Dreg + Dreg (sat_flag) ; [* saturation optionally supported, but at the cost of longer
instruction length (b) */

16-BIT OPERANDS, 16-BIT RESULT
Dreg_lo_hi = Dreg_lo_hi + Dreg_lo_hi (sat_flag) ; // (b)

10.2.3 Syntax Terminology
Preg: PO, ..., P5, SP, FP
Dreg: RO, ..., R7
Dreg_lo_hi: ROL, ..., R7.L, RO.H, ..., R7.H

sat_flag: non-optional saturation flag, (S) or (NS)

10.2.4 Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length. Comment (b) identifies 32-bit
instruction length.

10.2.5 Functional Description

The Add instruction adds two source values and places the result in a destination register.

There are two ways to specify addition on 32-bit datain D-registers. One that is 16-bit instruction
length does not support saturation. The other instruction, which is 32-bit instruction length,
optionally supports saturation. The larger DSP instruction can sometimes save execution time
because it can be issued in parallel with certain other instructions. See “Parallel Issue”.

10-4 Blackfin DSP Instruction Set Reference

Bma/(/?@ Arithmetic Operations

Theinstructions for 16-bit data use half-word data register operands and store the result in a half-
word data register.

All instructions for 16-bit data are 32-bit instruction length.

Option: In the syntax, where sat_flag appears, substitute one of the following values:
* (S) —saturate the result
* (NS) —no saturation

See Section 1.5.5, “ Saturation,” on page 1-6 for a description of saturation behavior.

10.2.6 Flags Affected

D-register versions of thisinstruction set flags as follows:
* AZissetif result is zero; cleared if non-zero.
* AN issetif result is negative; cleared if non-negative.
* ACOissetif the operation generates a carry; cleared if no carry.
* Vissetif result overflows; cleared if no overflow.
VSissetif V isset; unaffected otherwise.

All other flags are unaffected.

The P-register versions of thisinstruction do not affect any flags.

10.2.7 Required Mode

User & Supervisor

10.2.8 Parallel Issue

The 32-bit versions of thisinstruction can be issued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

The 16-bit versions of this instruction cannot be issued in parallel with other instructions.

10.2.9 Example

r5=r2+rl; // 16-bit instruction length add, no saturation

r5=r2+rl(ns); [* same result as above, but 32-bit instruction
length */

r5=r2+rl(s); /I saturate the result

p5=p3+p0;

/I'1f r0.l = 0x7000 and r7.I = 0x2000, then . . .
r4.l =r0.l +r7.1(ns) ;

/* ... producesr4.l = 0x9000, because no

saturation is enforced */

Blackfin DSP Instruction Set Reference 10-5

Arithmetic Operations ”’””"/’@&

10.2.10

10.2.11

10-6

/['1f r0.l = 0x7000 and r7.h = 0x2000, then . . .
r4l =r0.l +r7.h(s);
[* ... producesr4.l = OX7FFF, saturated to the
maximum positive value */
ro.l =r2.h +rd.l(ns) ;
rl.l =r3.h+r7.h(ns);
rdh=r0. +r7.l (ns);
r4.h=r0. +r7.h (ns) ;
ro.h=r2.h +rd.l(s); /I saturate the result
rl.h=r3.h+r7.h(ns);

Also See

Modify — Increment, Round — 12-bit, Round — 20-bit, Shift with Add and Add with Shift (both in
“Shift/Rotate Operations’ chapter), Vector Add/Subtract (in “Vector Operations’ chapter)

Special Applications

None

Blackfin DSP Instruction Set Reference

Bma/(/?@ Arithmetic Operations

10.3 Add Immediate

10.3.1 General Form

register += constant

10.3.2 Syntax

Dreg +=imm7 ; // Dreg = Dreg + constant (@)
Preg +=imm7 ; I/ Preg = Preg + constant (a)
lreg+=2; /* increment Ireg by 2, half-word address pointer

increment (a)*/

lreg+=4; // word address pointer increment (@)

10.3.3 Syntax Terminology

Dreg: RO, ..., R7

Preg: PO, ..., P5, SP, FP

Ireg: 10, ..., 13

imm7: 7-bit signed field, with the range of -64 through 63

10.3.4 Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

10.3.5 Functional Description
The Add Immediate instruction adds a constant value to a register without saturation.

Note: To subtract immediate values from I-registers, use the Subtract Immediate instruction.

10.3.6 Flags Affected

D-register versions of thisinstruction set flags as follows:

e AZissetif resultiszero; cleared if non-zero.

AN issetif result is negative; cleared if non-negative.

ACO isset if the operation generates a carry; cleared if no carry.

V issetif result overflows; cleared if no overflow.
VSissetif V isset; unaffected otherwise.

Blackfin DSP Instruction Set Reference 10-7

Arithmetic Operations ”’””"/’@&

10.3.7

10.3.8

10.3.9

10.3.10

10.3.11

10-8

All other flags are unaffected.

The P-register and |-register versions of thisinstruction do not affect any flags.

Required Mode

User & Supervisor

Parallel Issue

The Data Register and Pointer Register versions of the Add Immediate instruction cannot beissued
in parallel with other instructions.

The Index Register versions of this instruction can be issued in parallel with specific other
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

The Data Register and Pointer Register versions of thisinstruction cannot beissued in parallel with
other instructions.

Example

ro+=40;

p5+=-4 ; /I decrement by adding a negative value
i0+=2;

il+=4;

Also See

Subtract Immediate

Special Applications

None

Blackfin DSP Instruction Set Reference

Bma/(/?@ Arithmetic Operations

10.4 Divide Primitive

10.4.1 General Form
DIVS (dividend_register, divisor_register)

DIVQ (dividend register, divisor_register)

10.4.2 Syntax

DIVS (Dreg, Dreg); /* Initidize for DIVQ. Set the AQ flag based on
the signs of the 32-bit dividend and the 16-bit
divisor. Left shift the dividend one bit. Copy AQ
into the dividend LSB. (a) */

DIVQ (Dreg, Dreg); /* Based on AQ flag, either add or subtract the
divisor from the dividend. Then set the AQ flag
based on the MSB'’s of the 32-bit dividend and
the 16-bit divisor. Left shift the dividend one bit.
Copy thelogical inverse of AQ into the dividend
LSB. (a) */

10.4.3 Syntax Terminology

Dreg: RO, ..., R7

10.4.4 Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

10.4.5 Functional Description

The Divide Primitive instruction versions are the foundation elements of a non-restoring
conditional add-subtract division algorithm. See“Example” for such aroutine.

The dividend (numerator) isa 32-bit value. The divisor (denominator) is a 16-bit valuein the
lower half of divisor_register. The high-order half-word of divisor_register isignored entirely.

The division can either be signed or unsigned, but the dividend and divisor must both be of the
same type. The divisor cannot be negative. A signed division operation, where the dividend may be
negative, begins the sequence with the DIV'S (“divide-sign”) instruction, followed by repeated
execution of the DIVQ (“divide-quotient™) instruction. An unsigned division omitsthe DIVS
instruction. In that case, the user must manually clear the AQ flag of the ASTAT register before
issuing the DIV Q instructions.

Up to 16 bits of signed quotient resolution can be calculated by issuing DIV S once, then repeating
the DIVQ instruction 15 times. A 16-bit unsigned quotient is calculated by omitting DIVS,
clearing the AQ flag, then issuing 16 DIVQ instructions.

Less quotient resolution is produced by executing fewer DIVQ iterations.

Blackfin DSP Instruction Set Reference 10-9

Arithmetic Operations ”’””"/’@&

10-10

The result of each successive addition or subtraction appears in dividend_register, aligned and
ready for the next addition or subtraction step. The contents of divisor_register are not modified by
thisinstruction.

Thefinal quotient appears in the low-order half-word of dividend_register at the end of the
successive add/subtract sequence.

DIVS computes the sign bit of the quotient based on the signs of the dividend and divisor. DIVS
initializes the AQ flag based on that sign, and initializes the dividend for the first addition or
subtraction. DIV S performs no addition or subtraction.

DIVQ either adds (dividend + divisor) or subtracts (dividend — divisor) based on the AQ flag, then
re-initializes the AQ flag and dividend for the next iteration. If AQ is 1, addition is performed; if
AQ is 0, then subtraction.

See “Flags Affected”, below, for the conditions that set and clear the AQ flag.

Both instruction versions align the dividend for the next iteration by left shifting the dividend one
bit to the left (without carry). Thisleft shift accomplishes the same function as aligning the divisor
one bit to the right, such as one would do in manual binary division.

The format of the quotient for any numeric representation can be determined by the format of the
dividend and divisor. Let...

* NL represent the number of bitsto the left of the binary point, and
* NR represent the number of bits to the right of the binary point of the dividend (numerator);
¢ DL represent the number of bitsto the left of the binary point, and

* DR represent the number of bits to the right of the binary point of the divisor (denominator).

Then the quotient has NL — DL + 1 hitsto the | eft of the binary point and NR — DR — 1 hits to the
right of the binary point. See the exampleillustration, bel ow.

Dividend BBBB B . BBB BBBB BBBB BBBB BBBB BBBB BBBB
(numerator) NL bits NR bits

Divisor BB . BB BBBB BBBB BBBB

(denominator) DL bits DR bits

Quotient BBBB . BBBB BBBB BBBB

NL-DL+1 NR- DR- 1
(5 -2+ 1) (27 - 14 - 1)

4.12 format

Some format manipulation may be necessary to guarantee the validity of the quotient. For
example, if both operands are signed and fully fractional (dividend in 1.31 format and divisor in
1.15 format), the result isfully fractional (in 1.15 format) and therefore the upper 16-bits of the
dividend must have a smaller magnitude than the divisor to avoid a quotient overflow beyond 16-
bits. If an overflow occurs, AVO is set. User software is able to detect the overflow, re-scale the
operand, and repeat the division.

Blackfin DSP Instruction Set Reference

Bma/(/?@ Arithmetic Operations

Dividing two integers (32.0 dividend by a 16.0 divisor) resultsin an invalid quotient format
because the result will not fit in a 16-bit register. To divide two integers (dividend in 32.0 format
and divisor in 16.0 format) and produce an integer quotient (in 16.0 format), one must shift the
dividend one bit to the left (into 31.1 format) before dividing. This requirement to shift left limits
the useabl e dividend range to 31 bits. Violations of this range produce an invalid result of the
division operation.

The algorithm overflows if the result cannot be represented in the format of the quotient as
calculated above, or when the divisor is zero or less than the upper 16-bits of the dividend in
magnitude (which is tantamount to multiplication).

Error Conditions:

Two special cases can produce invalid or inaccurate results. Software can trap and correct both
Cases.

1. The Divide Primitive instructions do not support signed division by a negative divisor.
Attemptsto divide by anegative divisor result in aquotient that is, in most cases, one LSB less
than the correct value. If division by a negative divisor is required, use the following solution:

¢ Before performing the division, save the sign of the divisor in a scratch register.

¢ Calculate the absolute value of the divisor and use that value as the divisor operand in
the Divide Primitive instructions.

* After the divide sequence concludes, multiply the resulting quotient by the original
divisor sign.
The quotient then has the correct magnitude and sign.

2. The Divide Primitive instructions do not support unsigned division by a divisor greater than
Ox7FFF. If such divisions are necessary, pre-scale both operands by shifting the dividend and
divisor one bit to theright prior to division. The resulting quotient will be correctly aligned.

Of course, pre-scaling the operands decreases their resolution, and may introduce one L SB of
error in the quotient. Such error can be detected and corrected by the following solution:

* Savethe original (un-scaled) dividend and divisor in scratch registers.
* Pre-scale both operands as prescribed and perform the division as usual.

¢ Multiply the resulting quotient by the un-scaled divisor. Do not corrupt the quotient by
the multiplication step.

* Subtract the product from the un-scaled dividend. This step produces an error value.
* Compare the error value to the un-scaled divisor.

— If error > divisor, add one L SB to the quotient.

— If error < divisor, subtract one LSB from the quotient.

— If error = divisor, do nothing.

Tested examples of these solutions are planned to be added in alater edition of this document.

10.4.6 Flags Affected

Thisinstruction affects flags as follows:
* AQ equasdividend MSB Exclusive-OR divisor MSB

Blackfin DSP Instruction Set Reference 10-11

Arithmetic Operations

10.4.7

10.4.8

10.4.9

10.4.10

10.4.11

10-12

Blﬂl.’l(/r@&

where dividend is a 32-hit value and

divisor isa 16-bit value.

All other flags are unaffected.

Required Mode

User & Supervisor

Parallel Issue

Thisinstruction cannot be issued in parallel with other instructions.

Example

/* Evaluate given asigned integer dividend and divisor */

pO0 = 15;
ro=70;
rl=5;

ro<<=1;

divs(r0, rl);

loop .div_prim |cO=p0;
loop_begin .div_prim;
divq (r0, rl);

loop_end .div_prim;
ro=ro0.l (x);

/* r0 contains the quotient (70/5 = 14). */

Also See

Multiply (Modulo 23?), Zero Overhead Loop

Special Applications

None

// Evaluate the quotient to 16 bits.
/I Dividend, or numerator
/I Divisor, or denominator

I* Left shift dividend by 1 needed for
integer division */

[* Evaluate quotient MSB. Initialize AQ

flag and dividend for the DIVQ loop. */
// Evaluate DIV Q p0=15 times.

[* Sign extend the 16-bit quotient to 32
bits.*/

Blackfin DSP Instruction Set Reference

Bma/(/?@

10.5

10.5.1

10.5.2

10.5.3

10.5.4

10.5.5

Arithmetic Operations

Exponent Detection

General Form

dest_reg = EXPADJ (sample_register, exponent_register)

Syntax

Dreg_lo=EXPADJ(Dreg, Dreg lo); /I 32-bit sample (b)
Dreg_lo=EXPADJ (Dreg_lo_hi,Dreg_lo); /I one 16-bit sample (b)
Dreg_lo=EXPADJ(Dreg, Dreg lo) (V) ; [/ two 16-bit samples (b)

Syntax Terminology

Dreg_lo_hi: RO.L, ..., R7.L, ROH, ..., R7.H
Dreg_lo: RO.L, ..., R7.L
Dreg: RO, ..., R7

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Exponent Detection instruction identifies the largest magnitude of two or three fractional
numbers based on their exponents. It compares the magnitude of one or two sample valuesto a
reference exponent and returns the smallest of the exponents.

The exponent is the number of sign bits minus one. In other words, the exponent is the number of
redundant sign bitsin a signed number.

Exponents are unsigned integers. The Exponent Detection instruction accommodates the two
special cases (0 and —1) and always returns the smallest exponent for each case.

The reference exponent and destination exponent are 16-bit half-word unsigned values. The sample
number can be either aword or half-word. The Exponent Detection instruction does not implicitly
modify input values. The dest_reg and exponent_register can be the same D-register. So doing
explicitly modifies the exponent_register.

The valid range of exponentsis 0 — 31, with 31 representing the smallest 32-bit number magnitude
and 15 representing the smallest 16-bit number magnitude.

Exponent Detection supports three types of samples— one 32-bit sample, one 16-bit sample (either
upper-haf or lower-half word), and two 16-bit samples that occupy the upper-half and lower-half
words of asingle 32-bit register.

Blackfin DSP Instruction Set Reference 10-13

Arithmetic Operations ”’””"/’@&

10.5.6

10.5.7

10.5.8

10.5.9

10.5.10

10.5.11

10-14

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of thisinstruction can beissued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

Example

r5.1 = expadj (r4, r2.);
Assume R4 = 0x0000 0052 and R2.L = 12. Then R5.L becomes 12.
Assume R4 = OxFFFF 0052 and R2.L = 12. Then R5.L becomes 12.
Assume R4 = 0x0000 0052 and R2.L = 27. Then R5.L becomes 24.
Assume R4 = 0xF000 0052 and R2.L = 27. Then R5.L becomes 3.

r5.1 = expadj (r4.l, r2.l);

Assume R4.L = 0x0765 and R2.L = 12. Then R5.L becomes 4.
Assume R4.L = 0xC765 and R2.L = 12. Then R5.L becomes 1.

r5.1 = expadj (r4.h, r2.l);
Assume R4.H = 0x0765 and R2.L = 12. Then R5.L becomes 4.
Assume R4.H = 0xC765 and R2.L = 12. Then R5.L becomes 1.
r5.1 = expadj (r4, r2.1)(v);

Assume R4.L = 0x0765, R4.H = OxFF74 and R2.L = 12. Then R5.L becomes 4.
Assume R4.L = 0x0765, R4.H = 0xE722 and R2.L = 12. Then R5.L becomes 2.

Also See

Sign Bit for more information about exponents

Special Applications

EXPADJ detects the exponent of the largest magnitude number in an array. The detected value may
then be used to normalize the array on a subsequent pass with a shift operation. Typically, use this
feature to implement block floating point capabilities.

Blackfin DSP Instruction Set Reference

Bma/(/?@

10.6

10.6.1
10.6.2
10.6.3
10.6.4

10.6.5

10.6.6

10.6.7

10.6.8

Arithmetic Operations

Maximum

General Form

dest reg=MAX (src_reg O,src reg 1)

Syntax

Dreg = MAX (Dreg, Dreg) ; /1 32-bit operands (b)

Syntax Terminology

Dreg: RO, ..., R7

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Maximum instruction returns the maximum, or most positive, value of the source registers.
The operation subtracts src_reg 1 from src_reg_0 and selects the output based on the signs of the
input values and the arithmetic flags.

The Maximum instruction does not implicitly modify input values. The dest_reg can be the same
D-register as one of the source registers. Doing so explicitly modifies the source register.

Flags Affected

Thisinstruction affects flags as follows:
* AZissetif resultis zero; cleared if non-zero.
* AN issetif result is negative; cleared if non-negative.
* Viscleared.

All other flags are unaffected.

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of thisinstruction can beissued in parallel with specific other 16-hit
instructions. For details, see Chapter 15, “Issuing Parallél Instructions.”

Blackfin DSP Instruction Set Reference 10-15

Arithmetic Operations ”’””"/’@&

10.6.9 Example
r5=max (r2,r3) ;
Assume R2 = 0x00000000 and R3 = 0x0000000F, then R5 = 0x0000000F.

Assume R2 = 0x80000000 and R3 = 0x0000000F, then R5 = 0xOO00000F.
Assume R2 = OxFFFFFFFF and R3 = 0xO000000F, then R5 = 0x0000000F.

10.6.10 Also See

Minimum, Maximum Value Selection and History Update, Vector Maximum, Vector Minimum
(under “Vector Operations’, for Viterbi decode algorithms)

10.6.11 Special Applications

None

10-16 Blackfin DSP Instruction Set Reference

Bma/(/?@

10.7

10.7.1
10.7.2
10.7.3
10.7.4

10.7.5

10.7.6

10.7.7

10.7.8

Arithmetic Operations

Minimum

General Form

dest_reg=MIN (src_reg 0, src_reg 1)

Syntax

Dreg = MIN (Dreg, Dreg) ; I/ 32-bit operands (b)

Syntax Terminology

Dreg: RO, ..., R7

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Minimum instruction returns the minimum value of the source registersto the dest_reg. (The
minimum value of the source registersis the value closest to — «.) The operation subtracts
src_reg_1from src_reg 0 and selects the output based on the signs of the input values and the
arithmetic flags.

The Minimum instruction does not implicitly modify input values. The dest_reg can be the same
D-register as one of the source registers. Doing so explicitly modifies the source register.

Flags Affected

Thisinstruction affects flags as follows:
* AZissetif result is zero; cleared if non-zero.
* AN issetif result is negative; cleared if non-negative.
* Viscleared.

All other flags are unaffected.

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of thisinstruction can beissued in parallel with specific other 16-hit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

Blackfin DSP Instruction Set Reference 10-17

Arithmetic Operations ”’””"/’@&

10.7.9 Example

r5=min(r2, r3);
Assume R2 = 0x00000000 and R3 = 0x0000000F, then R5 = 0x00000000.

Assume R2 = 0x80000000 and R3 = 0x0000000F, then R5 = 0x80000000.
Assume R2 = OxFFFFFFFF and R3 = 0x0000000F, then R5 = OxFFFFFFFF.

10.7.10 Also See

Maximum, Vector Maximum, Vector Minimum

10.7.11 Special Applications

None

10-18 Blackfin DSP Instruction Set Reference

Bma/(/?@

10.8

10.8.1

10.8.2

10.8.3

10.8.4

10.8.5

10.8.6

Arithmetic Operations

Modify — Decrement

General Form

dest reg-=src_reg

Syntax

40-BIT ACCUMULATORS

AO-=A1l; /* dest_reg_new = dest_reg_old - src_reg, saturate the
result at 40 bits (b) */
A0-=A1(W32); /* dest_reg new = dest_reg_old - src_reg, decrement and

saturate the result at 32 bits, sign extended (b) */
32-BIT REGISTERS

Preg -= Preg ; // dest_reg_new =dest_reg_old - src_reg (a)
Ireg -= Mreg ; /l dest_reg_new = dest_reg_old - src_reg (a)

Syntax Terminology
Preg: PO, ..., P5, SP, FP

Ireg: 10, ..., 13

Mreg: MO, ..., M3

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length. Comment (b) identifies 32-bit
instruction length.

Functional Description

The Modify-Decrement instruction decrements aregister by a user-defined quantity.

See Section 1.5.5, “ Saturation,” on page 1-6 for a description of saturation behavior.

Flags Affected

The Accumulator versions of this instruction affect the flags as follows:
* AZissetif resultis zero; cleared if non-zero.
* AN issetif result is negative; cleared if non-negative.

* ACOissetif the operation generates a carry; cleared if no carry.

Blackfin DSP Instruction Set Reference 10-19

Arithmetic Operations ”’””"/’@&

10.8.7

10.8.8

10.8.9

10.8.10

10.8.11

10-20

e AVOissetif result overflows; cleared if no overflow.
e AVOSissetif AVOis set; unaffected otherwise.

All other flags are unaffected.

The P-register and |-register versions do not affect any flags.

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of thisinstruction can beissued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

The 16-bit versions of this instruction cannot be issued in parallel with other instructions.

Example
a0-=al;
a0-=al (w32);

p3-=p0;
i1-=m2;

Also See

Modify — Increment, Subtract, Shift with Add

Special Applications

Typically, use the Index Register and Pointer Register versions of the Modify — Decrement
instruction to decrement indirect address pointers for load or store operations.

Blackfin DSP Instruction Set Reference

Bma/(/?@

Arithmetic Operations

10.9 Modify — Increment

10.9.1 General Form

dest reg +=src_reg

dest reg=(src_reg O+=src reg_1)

10.9.2 Syntax

40-BIT ACCUMULATORS
AO0+=A1l;

A0 += A1 (W32) ;

32-BIT REGISTERS
Preg += Preg (BREV) ;

Ireg += Mreg (opt_brev) ;

Dreg=(A0+=Al);

/* dest_reg_new = dest_reg_old + src_reg, saturate the
result at 40 bits (b) */

/* dest_reg_new = dest_reg_old + src_reg, signed saturate the
result at 32 bits, sign extended (b) */

/* dest_reg_new = dest_reg_old + src_reg, bit reversed carry,
only (a) */

/* dest_reg_new = dest_reg_old + src_reg, optional bit reverse
)

/* increment 40-bit AO by A1 with saturation at 40 bits, then
extract the result into a 32-bit register with saturation at 32 bits
(b) */

16-BIT HALF-WORD DATA REGISTERS

Dreg_lo hi=(A0+=A1);

10.9.3 Syntax Terminology
Dreg: RO, ..., R7
Preg: PO, ..., P5, SP,FP
Ireg: 10, ..., 13
Mreg: MO, ..., M3

[* Increment 40-bit AO by A1 with saturation at 40 bits, then
extract the result into a half register. The extraction step
involves first rounding the 40-bit result at bit 16 (according
to the RND_MOD bit in the ASTAT register), then saturating
at 32 bits and moving bits 31:16 into the half register. (b) */

opt_brev: optional bit reverse syntax; replace with (brev)

Dreg_lo_hi: RO.L, ..., R7.L, RO.H, ..., R7.H

Blackfin DSP Instruction Set Reference

10-21

Arithmetic Operations

10.9.4

10.9.5

10.9.6

Blﬂl.’l(/r@&

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length. Comment (b) identifies 32-bit
instruction length.

Functional Description

The Modify — Increment instruction increments aregister by a user-defined quantity. In some
versions, the instruction copies the result into a third register.

The “16-bit Half-Word Data Register” version increments the 40-bit A0 by A1 with saturation at
40 bits, then extracts the result into a half register. The extraction step involves first rounding the
40-bit result at bit 16 (according to the RND_MOD bit in the ASTAT register), then saturating at 32
bits and moving bits 31:16 into the half register.

See Section 1.5.5, “ Saturation,” on page 1-6 for a description of saturation behavior.

See Section 1.5.6, “Rounding and Truncating,” on page 1-7 for a description of rounding behavior.

Option

(BREV) — hit reverse carry adder. When specified, the carry bit is propagated from left to right, as
shown in Figure 10-1, instead of right to left.

When bit reversal is used on the Index Register version of thisinstruction, circular buffering is
disabled to support operand addressing for FFT, DCT and DFT agorithms. The Pointer Register
version does not support circular buffering in any case.

Figure 10-1. Bit Addition Flow for the Bit Reverse (BREV) Case

10.9.7

10-22

an

+

I
bn

cn

a2
I

+

I
b2

c2

—>

al
I

+

I
bl

cl

—>

a0

4“0

b0

Flags Affected

The Data Register and Accumulator versions of the Modify-Increment instruction affects flags as
follows:

e AZissetif result is zero; cleared if non-zero.

* AN issetif result is negative; cleared if non-negative.

* ACOissetif the operation generates a carry; cleared if no carry.

* Vissetif result saturates and the dest_reg isaDreg; cleared if no saturation.
e VSissetif Visset; unaffected otherwise.

* AVOissetif result saturates and the dest_regis AO; cleared if no saturation.
* AVOSissetif AVOis set; unaffected otherwise.

Blackfin DSP Instruction Set Reference

Bma/(/?@ Arithmetic Operations

All other flags are unaffected.

The Pointer Register, Index Register, and Modify Register versions of the instruction do not affect
the flags.

10.9.8 Required Mode

User & Supervisor

10.9.9 Parallel Issue

The 32-bit versions of thisinstruction can be issued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallél Instructions.”

The 16-bit versions of this instruction cannot be issued in parallel with other instructions.

10.9.10 Example

a0+=al;

a0 +=al (w32) ;

p3 += p0 (brev) ;

il+=ml;

i0 +=mO (brev) ; I/l optional carry bit reverse mode
r5=(a0+=al);

r2l=(@+=al);

r5.h=(a0 +=al) ;

10.9.11 Also See

Modify — Decrement, Add, Shift with Add

10.9.12 Special Applications

Typically, use the Index Register and Pointer Register versions of the Modify — Increment
instruction to increment indirect address pointers for load or store operations.

Blackfin DSP Instruction Set Reference 10-23

Arithmetic Operations ”’””"/’@&

10.10

10.10.1

10.10.2

10.10.3

10.10.4

10.10.5

10-24

Multiply

General Form

dest reg=src_reg_0* src_reg 1 (opt_mode)

Syntax

MULTIPLY-AND-ACCUMULATE UNIT 0 (MACO0)

Dreg_lo=Dreg_lo _hi * Dreg_lo_hi (opt_ mode 1); /* 16-bit result into the destination lower
half-word register (b) */

Dreg =Dreg_lo_hi * Dreg_lo_hi (opt_mode 2) ; [l 32-bit result (b)

MULTIPLY-AND-ACCUMULATE UNIT 1 (MAC1)

Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (opt_mode 1) ; /* 16-bit result into the destination upper
half-word register (b) */

Dreg=Dreg_lo_hi * Dreg_lo_hi (opt_mode 2) ; /I 32-bit result (b)

Syntax Terminology

Dreg: RO, ..., R7

Dreg_lo: RO.L, ..., R7.L

Dreg_hi: ROH, ..., R7.H

Dreg_lo_hi: RO.L, ..., R7.L,RO.H, .., R7.H

opt_mode_1: Optionally (FU), (1S), (1V), (T), (TFU), (S2RND), (1SS2) or (IH). Optionaly, (M)
can be used with MACL1 versions either alone or with any of these other options. When used
together, the option flags must be enclosed in one set of parenthesis and separated by a comma.
Example: (M, IS).

opt_mode 2: Optionally (FU), (1S), (S2RND), or (1SS2). Optionally, (M) can be used with MAC1
versions either alone or with any of these other options. When used together, the option flags must
be enclosed in one set of parenthesis and separated by a comma. Example: (M, 1S).

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Multiply instruction multiplies the two 16-bit operands and stores the result directly into the
destination register with saturation.

Theinstruction is like the Multiply-Accumulate instructions, except that Multiply does not affect
the Accumulators.

Blackfin DSP Instruction Set Reference

Bma/(/?@

10.10.6

Arithmetic Operations

Operations performed by the Multiply-and-Accumulate Unit 0 (MACO) portion of the architecture
load their resultsinto the lower half of the destination data register. Operations performed by
MACL1 load their results into the upper half of the destination data register.

In 32-bit result syntax, the MAC performing the operation will be determined by the destination
Dreg. Even-numbered Dregs (R6, R4, R2, R0) invoke MACO. Odd-numbered Dregs (R7, R5, R3,
R1) invoke MACL. Therefore, 32-hit result operations using the (M) option can only be performed
on odd-numbered Dreg destinations.

In 16-bit result syntax, the MAC performing the operation will be determined by the destination
Dreg half. Low-half Dregs (RO.L, ..., R7.L) invoke MACO. High-half Dregs (RO.H, ..., R7.H)
invoke MACL. Therefore, 16-bit result operations using the (M) option can only be performed on
high-half Dreg destinations.

Theversions of thisinstruction that produce 16-bit results are affected by the RND_MQOD hit in the
ASTAT register when they copy the results into the 16-bit destination register. RND_MOD
determines whether biased or unbiased rounding isused. RND_MOD controls rounding for all
versions of thisinstruction that produce 16-bit results except the (1S), (IU) and (1SS2) options.

See Section 1.5.5, “ Saturation,” on page 1-6 for a description of saturation behavior.

See Section 1.5.6, “Rounding and Truncating,” on page 1-7 for a description of rounding behavior.
The versions of thisinstruction that produce 32-bit results do not perform rounding and are not
affected by the RND_MOD bit in the ASTAT register.

Options

The Multiply instruction supports the following options. Saturation is supported for every option.

Table 10-1. Multiply Options (Sheet 1 of 2)

Option Description
default both operands of both MACs are treated as signed fractions with left-shift correction to
normalize the fraction.
unsigned fraction operands. No shift correction.
(FU) d fract ds. No shift 1
(1s) signed integer operands. No shift correction.
(V) unsigned integer operands. No shift correction. Available only for the 16-bit destination
versions of this instruction.
M signed fraction operands. Truncate the result to 16 bits when copying to the destination half
register. Available only for the 16-bit destination versions of this instruction.
(TEU) unsigned fraction operands. Truncate the result to 16 bits when copying to the destination
half register. Available only for the 16-bit destination versions of this instruction.
signed fraction operands with left-shift correction to normalize the fraction. Scale the result
(S2RND) (multiply x2 by performing a one-place shift left) when copying to the destination half register.
If scaling produces a signed value larger than 16 bits, the number is saturated to its maximum
positive or negative value.

Blackfin DSP Instruction Set Reference 10-25

Arithmetic Operations ”’””"/’@&

Table 10-1. Multiply Options (Sheet 2 of 2)

Option Description

signed integer operands. Scale the result (multiply x2 by performing a one-place shift left)
(ISss2) when copying to the destination half register. If scaling produces a signed value larger than
16 bits, the number is saturated to its maximum positive or negative value.

integer multiplication with high half-word extraction. The result is saturated at 32 bits and bits
(IH) 31:16 of that value are copied into the destination half register. Available only for the 16-bit
destination versions of this instruction.

mixed multiply mode. MAC1 multiplies a signed fraction by an unsigned fraction operand
with no left-shift correction. Src_reg_0 is signed and src_reg_1 is unsigned. MACO performs
an unmixed multiply on signed fractions by default or another format as specified. The (M)
option can be used alone or in conjunction with one other format option, but only with MAC1
versions of this instruction. When used together, the option flags must be enclosed in one set
of parenthesis and separated by a comma. Example: (M, IS).

(M)

To truncate the result, the operation eliminates the least significant bits that do not fit into the
destination register.

In fractional mode, the product of the smallest representable fraction timesitself (i.e., 0x8000 times
0x8000) is saturated to the maximum representabl e positive fraction (Ox7FFF).

10.10.7 Flags Affected

Thisinstruction affects flags as follows:
¢ Vissetif result saturates; cleared if no saturation.
e VSissetif V is set; unaffected otherwise.

All other flags are unaffected.

10.10.8 Required Mode

User & Supervisor

10.10.9 Parallel Issue

The 32-bit versions of this instruction can be issued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

10.10.10 Example

r3.1=r3.h*r2.h; /* MACO. Both operands are signed fractions.
*/

r3.h=r6.h*ra.| (fu) ; /* MACL1. Both operands are unsigned
fractions. */

10-26 Blackfin DSP Instruction Set Reference

Bma/(/?@ Arithmetic Operations

ré=r3.h*rd.h; /* MACO. Signed fraction operands, results

saved as 32 hits. */

10.10.11 Also See

Multiply and Multiply-Accumulate to Accumulator, Multiply and Multiply-Accumulate to Half-

Register, Multiply and Multiply-Accumulate to Data Register, Multiply (Modulo 232), Vector
Multiply, Vector Multiply and Multiply-Accumulate

10.10.12 Special Applications

Blackfin DSP Instruction Set Reference 10-27

Arithmetic Operations ”’””"/’@&

10.11

10.11.1

10.11.2

10.11.3

10.11.4

10.11.5

10-28

Multiply and Multiply-Accumulate to Accumulator

General Form

accumulator = src_reg 0 * src_reg_1 (opt_mode)
accumulator +=src_reg 0* src_reg_1 (opt_mode)
accumulator = src_reg_ 0* src_reg 1 (opt_mode)

Syntax

MULTIPLY-AND-ACCUMULATE UNIT 0 (MACO0) OPERATIONS
AO=Dreg lo_hi * Dreg_lo_hi (opt_mode) ; /I multiply and store (b)
A0 +=Dreg_lo _hi * Dreg_lo_hi (opt_mode) ; [l multiply and add (b)
AO0—=Dreg_lo hi * Dreg_lo_hi (opt_mode) ; [/ multiply and subtract (b)

MULTIPLY-AND-ACCUMULATE UNIT 1 (MAC1) OPERATIONS

A1=Dreg lo hi * Dreg_lo _hi (opt_mode) ; [/ multiply and store (b)
Al +=Dreg lo_hi * Dreg lo_hi (opt_mode) ; /I multiply and add (b)
Al—=Dreg lo hi* Dreg lo_hi (opt_mode) ; // multiply and subtract (b)

Syntax Terminology

Dreg lo_hi: ROLL, ..., R7.L, RO.H, .., R7.H

opt_mode: Optionaly (FU), (1S), or (W32). Optionally, (M) can be used either alone or with
(W32). If multiple options are specified together for aMAC, the options must be separated by
commas and enclosed within a single set of parenthesis. Example: (M, W32)

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Multiply and Multiply-Accumulate to Accumulator instruction multiplies two 16-bit half-
word operands. It stores, adds or subtracts the product into a designated Accumulator with
saturation.

The Multiply-and-Accumulate Unit 0 (MACO) portion of the architecture performs operations that
involve Accumulator AO. MACL performs A1l operations.

By default, the instruction treats both operands of both MACs as signed fractions with | eft-shift
correction as required.

Blackfin DSP Instruction Set Reference

Bma/(/?@ Arithmetic Operations

10.11.6 Options

The Multiply and Multiply-Accumulate to Accumulator instruction supports the following options.
Saturation is supported for every option.

Table 10-2. Options for Multiply and Multiply-Accumulate to Accumulator

Option Description
(FU) unsigned fraction or unsigned integer operands. No shift correction.
(1s) signed integer operands. No shift correction.

signed fraction operands, sign extended; saturates both Accumulators at 32 bits.

Left-shift correction of the product performed, as required. Used for legacy GSM speech
(W32) vocoder algorithms written for 32-bit Accumulators.

Although the A0.X and Al.X extension bits are not part of computations in this mode, the
extension bits are affected through sign extension.

mixed multiply mode on MAC1. MAC1 multiplies a signed fraction by an unsigned fraction
operand with no left-shift correction. Src_reg_0 is signed and src_reg_1 is unsigned. MACO
performs an unmixed multiply on signed fractions by default or another format as specified.
The (M) option can be used alone or in conjunction with the (W32) option for MAC1; no other
MAC1 options are valid with (M). When used together, the option flags must be enclosed in
one set of parenthesis and separated by a comma. Example: (M, W32).

(M)

When the (M) and (W32) options are used together, both MACs saturate their Accumulator
products at 32 bits. MAC1 multiplies signed fractions by unsigned fractions and MACO multiplies
signed fractions.

When used together, the order of the optionsin the syntax makes no difference.

In fractional mode, the product of the most negative representabl e fraction timesitself (i.e., 0x8000
times 0x8000) is saturated to the maximum representabl e positive fraction (Ox7FFF) before
accumulation.

See Section 1.5.5, “ Saturation,” on page 1-6 for a description of saturation behavior.

10.11.7 Flags Affected

Thisinstruction affects flags as follows:

* AVOissetif resultin Accumulator AO (MACO operation) saturates; cleared if A0 result does
not saturate.

* AVOSissetif AVO is set; unaffected otherwise.

¢ AVlissetif resultin Accumulator A1 (MACL operation) saturates; cleared if A1 result does
not saturate.

e AV1Sissetif AV1isset; unaffected otherwise.

All other flags are unaffected.

Blackfin DSP Instruction Set Reference 10-29

Arithmetic Operations ”’””"/’@&

10.11.8 Required Mode

User & Supervisor

10.11.9 Parallel Issue

The 32-bit versions of this instruction can beissued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

10.11.10 Example

a0=r3.h*r2.h; /* MACQO, only. Both operands are signed
fractions. Load the product into AQ. */

al+=r6.h*r4.l (fu) ; /* MAC1, only. Both operands are unsigned
fractions. Accumulate into A1 */

10.11.11 Also See

Multiply, Multiply and Multiply-Accumul ate to Half-Register, Multiply and Multiply-Accumul ate
to Data Register, Multiply (Modulo 232), Vector Multiply, Vector Multiply and Multiply-
Accumulate

10.11.12 Special Applications

DSP filter applications use the Multiply and Multiply-Accumulate to Accumulator instruction
often to calculate the dot product between two signal vectors.

10-30 Blackfin DSP Instruction Set Reference

Bma/(/?@ Arithmetic Operations

10.12 Multiply and Multiply-Accumulate to Half-Register

10.12.1 General Form

dest_reg half = (accumulator = src_reg_0* src_reg 1) (opt_mode)
dest_reg half = (accumulator +=src_reg 0* src_reg 1) (opt_mode)
dest_reg_half = (accumulator = src_reg 0* src_reg 1) (opt_mode)

10.12.2 Syntax

MULTIPLY-AND-ACCUMULATE UNIT 0 (MACO0)

Dreg_lo= (A0 = Dreg_lo_hi * Dreg_lo_hi) (opt_mode) ; // multiply and store (b)
Dreg_lo= (A0 +=Dreg_lo_hi * Dreg _lo_hi) (opt_mode) ; // multiply and add (b)
Dreg_lo=(A0—=Dreg_lo_hi * Dreg_lo_hi) (opt_mode) ; // multiply and subtract (b)

MULTIPLY-AND-ACCUMULATE UNIT 1 (MAC1)

Dreg_hi = (A1 =Dreg_lo hi * Dreg_lo_hi) (opt_mode) ; // multiply and store (b)
Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) (opt_mode) ; // multiply and add (b)
Dreg_hi =(A1—=Dreg_lo_hi * Dreg_lo_hi) (opt_mode) ; // multiply and subtract (b)

10.12.3 Syntax Terminology

Dreg lo_hi: ROL, ..., R7.L,ROH, ..., R7.H
Dreg_lo: RO.L, ..., R7.L
Dreg_hi: ROH, ..., R7.H

opt_mode: Optionally (FU), (1S), (IU), (T), (TFU), (S2RND), (1SS2) or (IH). Optionaly, (M) can
be used with MAC1 versions either alone or with any of these other options. If multiple options are
specified together for aMAC, the options must be separated by commas and enclosed within a
single set of parenthesis. Example: (M, TFU)

10.12.4 Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

10.12.5 Functional Description

The Multiply and Multiply-Accumulate to Half-Register instruction multiplies two 16-bit half-
word operands. The instruction stores, adds or subtracts the product into a designated
Accumulator. It then copies 16 bits (saturated at 16 hits) of the Accumulator into a data half-
register.

The fraction versions of thisinstruction (the default and “ (FU)” options) transfer the Accumulator
result to the destination register according to the diagrams bel ow.

Blackfin DSP Instruction Set Reference 10-31

Arithmetic Operations ”’””"/’@&

A0.X AO0.h AO0.I
AO 0000 0000 | XXXX XXXX XXXX XXXX ‘ XXXX XXXX XXXX XXXX ‘

—

Destination Register ‘ XXXX XXXX XXXX XXXX ‘ XXXX XXXX XXXX XXXX

Al1.X Al.h Alll
Al 0000 0000 | XXXX XXXX XXXX XXXX ‘ XXXX XXXX XXXX XXXX ‘

'

Destination Register ‘ XXXX XXXX XXXX XXXX ‘ XXXX XXXX XXXX XXXX

10-32 Blackfin DSP Instruction Set Reference

Bma/(/?@ Arithmetic Operations

Theinteger versions of thisinstruction (the“(1S)” and “(IU)” options) transfer the Accumulator
result to the destination register according to the diagrams, shown below:

A0.X AO0.h AO.l
A0 0000 0000 | XXXX XXXX XXXX XXXX ‘ XXXX XXXX XXXX XXXX ‘

Destination Register ‘ XXXX XXXX XXXX XXXX ‘ XXXX XXXX XXXX XXXX

Al.X Al.h Alll
Al 0000 0000 ‘ XXXX XXXX XXXX XXXX ‘ XXXX XXXX XXXX XXXX ‘

'/\J

Destination Register ‘ XXXX XXXX XXXX XXXX ‘ XXXX XXXX XXXX XXXX ‘

The Multiply-and-Accumulate Unit 0 (MACO) portion of the architecture performs operations that
involve Accumulator AO and loads the results into the lower half of the destination data register.
MAC1 performs A1 operations and loads the results into the upper half of the destination data
register.

All versions of thisinstruction that support rounding are affected by the RND_MOD bit in the
ASTAT register when they copy the results into the destination register. RND_MOD determines
whether biased or unbiased rounding is used.

See Section 1.5.6, “Rounding and Truncating,” on page 1-7 for a description of rounding behavior.

10.12.6 Options

The Multiply and Multiply-Accumulate to Half-Register instruction supports operand and
Accumulator copy options.

The options are:

Table 10-3. Operand and Accumulator Copy Options of Multiply and Multiply-Accumulate
to Half-Register (Sheet 1 of 2)

Option Operand Treatment Accumulator Copy Formatting

High half-word extraction from Accumulator
with 16-bit saturation and rounding. The
rounding mode is dictated by the RND_MOD
bit in the ASTAT register.

Both operands of both MACs are treated as
Default signed fractions with left-shift correction to
normalize the fraction.

Unsigned fraction operands. No shift

(FU) . Same as Default.
correction.
. . . . Low half-word extraction from Accumulator
(1S) Signed integer operands. No shift correction. with 16-bit saturation.
Unsigned integer operands. No shift Low half-word extraction from Accumulator
(V) : ; . _
correction with 16-bit saturation.

Blackfin DSP Instruction Set Reference 10-33

Arithmetic Operations ”’””"/’@&

Table 10-3. Operand and Accumulator Copy Options of Multiply and Multiply-Accumulate

10.12.7

10-34

to Half-Register (Sheet 2 of 2)

Option Operand Treatment Accumulator Copy Formatting

High half-word extraction with saturation from

M Same as Default. Accumulator. Truncates low half-word.

Unsigned fraction operands. No shift High half-word extraction from Accumulator.

(TFU) correction. Truncate low half-word.

High half-word extraction with scaling,
rounding and 16-bit saturation. The rounding

. . . . mode is dictated by the RND_MOD bit in the
Signed fraction operands with left-shift ASTAT register.

(S2RND) correction to normalize the fraction.

Scales the Accumulator contents (multiplies x2
by a one-place shift left) and rounds the upper
16 bits before truncating the lower 16 bits.

Low half-word extraction with scaling and 16-
bit saturation.
(1Ss2) Signed integer operands. No shift correction. | Scales the Accumulator contents (multiplies x2

by a one-place shift left) before copying the
lower 16-bits.

High half-word extraction with 32-bit saturation,
then rounding on upper 16-bits. The rounding
mode is dictated by the RND_MOD bit in the
ASTAT register.

(IH) Signed integer operands. No shift correction.

Signed by unsigned fraction multiplication.
No shift correction. Src_reg_0 is signed and
src_reg_1 is unsigned.

Only applies to MAC1 versions of this
instruction. MACO performs an unmixed
multiply as directed by option flags (or the
(M) default condition if flags are not specified). Same as Default.

This option flag can be used alone or in
conjunction with one other format option for
MACL1. If multiple options are specified
together for a MAC, the options must be
separated by commas and enclosed within a

single set of parenthesis. Example: (M, TFU)

To truncate the result, the operation eliminates the least significant bits that do not fit into the
destination register.

When necessary, saturation is performed after the rounding.

In fractional mode, the product of the most negative representabl e fraction timesitself (i.e., 0x8000
times 0x8000) is saturated to the maximum representabl e positive fraction (Ox7FFF) before
accumul ation.

If you want to keep the unaltered contents of the Accumulator, use a simple Move instruction to
copy A.x or A.w to or from aregister.

See Section 1.5.5, “ Saturation,” on page 1-6 for a description of saturation behavior.

Flags Affected

Thisinstruction affects flags as follows:

Blackfin DSP Instruction Set Reference

Bma/(/?@ Arithmetic Operations

V isset if the result extracted to the Dreg saturates; cleared if no saturation.
* VSissatif V isset; unaffected otherwise,

¢ AVOissetif resultin Accumulator AO (MACO operation) saturates; cleared if A0 result does
not saturate.

* AVOSissetif AVO is set; unaffected otherwise.

* AVlissetif resultin Accumulator A1 (MACL operation) saturates; cleared if A1 result does
not saturate.

e AV1Sissetif AV1isset; unaffected otherwise.

All other flags are unaffected.

10.12.8 Required Mode

User & Supervisor

10.12.9 Parallel Issue

The 32-bit versions of thisinstruction can beissued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallél Instructions.”

10.12.10 Example

r3.1=(a0=r3.h*r2.h) ; /* MACQO, only. Both operands are signed
fractions. Load the product into A0, then copy
tor3l. */

r3.h=(al+=r6.h*r4.l) (fu) ; /* MAC1, only. Both operands are unsigned
fractions. Add the product into A1, then copy
tor3.h*/

10.12.11 Also See

Multiply and Multiply-Accumulate to Accumulator, Multiply and Multiply-Accumulate to Data
Register, Multiply (Modulo 232), Vector Multiply, Vector Multiply and Multiply-Accumulate

10.12.12 Special Applications

DSP filter applications use the Multiply-Accumulate Half-Register instruction often to calculate
the dot product between two signal vectors.

Blackfin DSP Instruction Set Reference 10-35

Arithmetic Operations ”’””"/’@&

10.13

10.13.1

10.13.2

10.13.3

10.13.4

10.13.5

10-36

Multiply and Multiply-Accumulate to Data Register

General Form

dest_reg = (accumulator =src_reg 0* src_reg 1) (opt_mode)
dest_reg = (accumulator +=src_reg 0* src_reg 1) (opt_mode)
dest_reg = (accumulator —= src_reg 0* src_reg_1) (opt_mode)

Syntax

MULTIPLY-AND-ACCUMULATE UNIT 0 (MACO)

Dreg_even = (A0 =Dreg_lo_hi * Dreg_lo_hi) (opt_mode) ;// multiply and store (b)
Dreg_even = (A0 +=Dreg_lo_hi * Dreg_lo_hi) (opt_mode) ;// multiply and add (b)
Dreg_even = (AO—=Dreg_lo_hi * Dreg_lo_hi) (opt_mode) ;// multiply and subtract (b)

MULTIPLY-AND-ACCUMULATE UNIT 1 (MAC1)

Dreg_odd = (A1=Dreg_lo_hi * Dreg_lo_hi) (opt_mode) ; // multiply and store (b)
Dreg_odd = (A1 +=Dreg_lo_hi * Dreg_lo_hi) (opt_mode) ;// multiply and add (b)
Dreg_odd = (A1 —= Dreg_lo_hi * Dreg_lo_hi) (opt_mode) ;// multiply and subtract (b)

Syntax Terminology

Dreg lo_hi: ROL, ..., R7.L,RO.H, ..., R7.H
Dreg_even: RO, R2, R4, R6
Dreg_odd: R1, R3, R5, R7

opt_mode: Optionaly (FU), (1S), (S2RND), or (1SS2). Optionally, (M) can be used with MAC1
versions either alone or with any of these other options. If multiple options are specified together
for aMAC, the options must be separated by commas and enclosed within a single set of
parenthesis. Example: (M, 1S)

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

Thisinstruction multiplies two 16-hit half-word operands. Theinstruction stores, adds or subtracts
the product into a designated Accumulator. It then copies 32 bits of the Accumulator into a data
register. The 32 bits are saturated at 32 hits.

The Multiply-and-Accumulate Unit 0 (MACO) portion of the architecture performs operations that

involve Accumulator AQ; it loads the results into an even-numbered dataregister. MAC1 performs
A1 operations and |oads the results into an odd-numbered data register.

Blackfin DSP Instruction Set Reference

Bma/(/?@

10.13.6

Arithmetic Operations

Combinations of these instructions can be combined into a single instruction. See Section 14.10,
“Vector Multiply and Multiply-Accumulate,” on page 14-28.

Options

The Multiply and Multiply-Accumulate to Data Register instruction supports operand and
Accumulator copy options.

The options are:

Table 10-4. Operand and Accumulator Copy Options of Multiply and Multiply-Accumulate

to Data Register

Option Operand Treatment Accumulator Copy Formatting

Both operands of both MACs are treated as
Default signed fractions with left-shift correction to
normalize the fraction.

32-bit extraction from Accumulator with 32-bit
saturation.

Unsigned fraction operands. No shift

(FU) Same as Default.

correction.
(1S) Signed integer operands. No shift correction. | Same as Default.
32-bit extraction with scaling and 32-bit
(S2RND) Signed fraction operands with left-shift saturation.
correction to normalize the fraction. Scales the Accumulator contents (multiplies x2
by a one-place shift left).
32-bit extraction with scaling and 32-bit
saturation.
(1ISS2) Signed integer operands. No shift correction.

Scales the Accumulator contents (multiplies x2
by a one-place shift left).

Signed by unsigned fraction multiplication. No
shift correction. Src_reg_0 is signed and
src_reg_1 is unsigned.

Only applies to MACL1 versions of this
instruction. MACO performs an unmixed
multiply as directed by option flags (or the
(M) default condition if flags are not specified). Same as Default.

This option flag can be used alone or in
conjunction with one other format option for
MACL1. If multiple options are specified
together for a MAC, the options must be
separated by commas and enclosed within a
single set of parenthesis. Example: (M, IS)

The syntax supports only biased rounding. The RND_MOD bit in the ASTAT register has no
bearing on the rounding behavior of thisinstruction.

See Section 1.5.6, “Rounding and Truncating,” on page 1-7 for a description of rounding behavior.
In fractional mode, the product of the most negative representabl e fraction timesitself (i.e., 0x8000
times 0x8000) is saturated to the maximum representabl e positive fraction (Ox7FFF) before
accumulation.

If you want to keep the unaltered contents of the Accumulator, use a simple Move instruction to
copy A.x or A.w to or from aregister.

Blackfin DSP Instruction Set Reference 10-37

Arithmetic Operations ”’””"/’@&

10.13.7

10.13.8

10.13.9

10.13.10

10.13.11

10.13.12

10-38

See Section 1.5.5, “ Saturation,” on page 1-6 for a description of saturation behavior.

Flags Affected

Thisinstruction affects flags as follows:
* Vissetif theresult extracted to the Dreg saturates; cleared if no saturation.
* VSissetif V isset; unaffected otherwise.

* AVOissetif resultin Accumulator AO (MACO operation) saturates; cleared if A0 result does
not saturate.

* AVOSissetif AVO is set; unaffected otherwise.

* AVlissetif resultin Accumulator A1l (MACL operation) saturates; cleared if A1 result does
not saturate.

e AV1Sissetif AV1is set; unaffected otherwise.

All other flags are unaffected.

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of this instruction can beissued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

Example

r4=(a0=r3.h*r2.h) ; /* MACQO, only. Both operands are signed
fractions. Load the product into AQ, then into
r4.*/

r3=(al+=r6.h*r4.l) (fu) ; /* MAC1, only. Both operands are unsigned
fractions. Add the product into A1, then into
r3.*/

Also See

Move Register, Move Register Half, Multiply and Multiply-Accumulate to Accumulator, Multiply
and Multiply-Accumul ate to Half-Register, Multiply (Modulo 232), Vector Multiply, Vector
Multiply and Multiply-Accumulate

Special Applications

DSP filter applications often use the Multiply and Multiply-Accumulate to Data Register
instruction or the vector version (“Vector Multiply and Multiply-Accumulate” on page 14-28) to
calculate the dot product between two signal vectors.

Blackfin DSP Instruction Set Reference

Bma/(/?@

10.14

10.14.1
10.14.2
10.14.3
10.14.4

10.14.5

Arithmetic Operations

Multiply (Modulo 232)

General Form

dest_reg *=multiple _register

Syntax

Dreg *=Dreg; I/ 32 x 32 integer multiply (a)

Syntax Terminology

Dreg: RO, ..., R7

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

The Multiply (Modulo 232) instruction multiplies two 32-bit data registers -- dest_reg and
multiple_register -- and saves the product in dest_reg. Theinstruction mimics multiplication in the
C language and effectively performs Dregl = (Dregl * Dreg2) modulo 2%2. Since the instruction
is modulo 232, the result always fits in a 32-bit dest_reg, and overflows are not possible; the
overflow flag in the ASTAT register is never set.

Users are required to limit input numbers to ensure that the resulting product does not exceed the
32-hit dest_reg capacity. If overflow notification is required, users should write their own
multiplication macro with that capability.

Accumulators AO and A1 are unchanged by this instruction.
The Multiply (Modulo 232) instruction does not implicitly modify the number in multiple_register.

Thisinstruction might be used to implement the congruence method of random number generation
according to...

X[n+1] = (& x[n]) mod 232
where...

X[n] isthe seed value,
aisalargeinteger, and

X[n+1] istheresult that can be multiplied again to further the pseudo-random sequence.

Blackfin DSP Instruction Set Reference 10-39

Arithmetic Operations ”’””"/’@&

10.14.6 Flags Affected

None

10.14.7 Required Mode

User & Supervisor

10.14.8 Parallel Issue

Thisinstruction cannot be issued in parallel with any other instructions.

10.14.9 Example

r3*=r0;

10.14.10 Also See

Divide Primitive, Arithmetic Shift, Shift with Add, Add with Shift

In the “Vector Operations’ chapter, see Vector Multiply and Multiply-Accumulate, Vector Multiply

10.14.11 Special Applications

None

10-40 Blackfin DSP Instruction Set Reference

Bma/(/?@

10.15

10.15.1

10.15.2

10.15.3

10.15.4

10.15.5

Arithmetic Operations

Negate (Two’s Complement)

General Form
dest reg=—src_reg

dest_accumulator = — src_accumulator

Syntax

Dreg=—Dreg; I (a)

Dreg = —Dreg (sat_flag) ; Il (b)

A0=-A0; 11 (b)

AO=-A1; 1 (b)

Al=-A0; 1 (b)

Al=-A1; 11 (b)

Al=—-A1, A0=-A0; /* negate both Accumulators simultaneously in

one 32-bit length instruction (b) */

Syntax Terminology

Dreg: RO, ..., R7

sat_flag: non-optional saturation flag, (S) or (NS)

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length. Comment (b) identifies 32-bit
instruction length.

Functional Description

The Negate (Two's Complement) instruction returns the same magnitude with the opposite
arithmetic sign. The Accumulator versions saturate the result at 40 bits. The instruction calculates
by subtracting from zero.

The Dreg version without the sat_flag does not saturate. The only case where the non-saturating
Negate would overflow is when the input value is 0x8000 0000. The saturating version returns
O0x7FFF FFFF; the non-saturating version returns 0x8000 0000.

In the syntax, where sat_flag appears, substitute one of the following values:
* (S) —saturate the result
¢ (NS) —no saturation

Blackfin DSP Instruction Set Reference 10-41

Arithmetic Operations ”’””"/’@&

See Section 1.5.5, “ Saturation,” on page 1-6 for a description of saturation behavior.

10.15.6 Flags Affected

Thisinstruction affects the flags as follows:
* AZissetif resultis zero; cleared if non-zero.
* AN issetif result is negative; cleared if non-negative.

* Vissetif result overflows or saturates and the dest_reg is a Dreg; cleared if no overflow or
saturation.

e VSissetif Visset; unaffected otherwise.

* AVOissetif result saturates and the dest_regis AO; cleared if no saturation.
* AVOSissetif AVOis set; unaffected otherwise.

* AV1issetif result saturates and the dest_regis Al; cleared if no saturation.
* AVI1Sissetif AV1isset; unaffected otherwise.

All other flags are unaffected.

10.15.7 Required Mode

User & Supervisor

10.15.8 Parallel Issue

The 32-bit versions of thisinstruction can beissued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

The 16-bit versions of this instruction cannot be issued in parallel with other instructions.

10.15.9 Example

10.15.10 Also See

Vector Negate (Two's Complement) (in “Vector Operations’ chapter)

10.15.11 Special Applications

None

10-42 Blackfin DSP Instruction Set Reference

Bma/(/?@

10.16

10.16.1
10.16.2

10.16.3

10.16.4

10.16.5

10.16.6

Arithmetic Operations

Round Half-Word

General Form

dest_reg = src_reg (RND)

Syntax

Dreg_lo_hi =Dreg (RND) ; // round and saturate the source to 16 bits. (b)

Syntax Terminology

Dreg: RO, ..., R7
Dreg lo_hi: ROL, ..., R7.L,ROH, ..., R7.H

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Round Half-Word instruction rounds a 32-bit, normalized-fraction number into a 16-bit,
normalized-fraction by extracting and saturating bits 31:16 then discarding bits 15:0. The
instruction supports only biased rounding, which adds a half LSB (in this case, bit 15) before
truncating bits 15:0. The ALU performs the rounding. The RND_MOD bit in the ASTAT register
has no bearing on the rounding behavior of thisinstruction.

Fractional datatypes such as the operands used in thisinstruction are always signed.
See Section 1.5.5, “ Saturation,” on page 1-6 for a description of saturation behavior.

See Section 1.5.6, “Rounding and Truncating,” on page 1-7 for a description of rounding behavior.

Flags Affected

The following flags are affected by this instruction:
* AZissetif resultis zero; cleared if non-zero.
* AN issetif result is negative; cleared if non-negative.
* Vissetif result saturates; cleared if no saturation.
* VSissetif V isset; unaffected otherwise.

All other flags are unaffected.

Blackfin DSP Instruction Set Reference 10-43

Arithmetic Operations ”’””"/’@&

10.16.7 Required Mode

User & Supervisor

10.16.8 Parallel Issue

The 32-bit versions of this instruction can beissued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

10.16.9 Example

[* If r6 = OXFFFC FFFF, then rounding to 16-
bitswith ... */
rl.l =r6 (rnd);
Il ... producesrl. = OxFFFD
/l'1f r7 = 0x0001 8000, then rounding . . .
rl.h=r7(rnd) ;
/... produces rl.h = 0x0002

10.16.10 Also See

Round — 12 Bit, Round — 20 Bit, Add

10.16.11 Special Applications

None

10-44 Blackfin DSP Instruction Set Reference

Bma/(/?@

10.17

10.17.1

10.17.2

10.17.3

10.17.4

10.17.5

10.17.6

Arithmetic Operations

Round — 12 Bit

General Form
dest reg=src_reg 0+ src_reg_1(RND12)
dest reg=src reg_0-src reg 1 (RND12)

Syntax
Dreg_lo_hi = Dreg + Dreg (RND12) ; Il (b)
Dreg_lo_hi = Dreg - Dreg (RND12) ; I (b)

Syntax Terminology

Dreg: RO, ..., R7
Dreg lo_hi: ROL, ..., R7.L,ROH, ..., R7.H

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Round — 12 Bit instruction adds or subtracts two 32-bit values, then rounds the sum on bit
position 12. The instruction saves 16 bits of the number by extracting bits 27:12 and saturates the
result.

Theinstruction supports only biased rounding, which adds ahalf LSB (in this case bit 11) before
truncating bits 11:0. The RND_MOD bhit in the ASTAT register has no bearing on the rounding
behavior of thisinstruction.

See Section 1.5.5, “ Saturation,” on page 1-6 for a description of saturation behavior.

See Section 1.5.6, “Rounding and Truncating,” on page 1-7 for a description of rounding behavior.

Flags Affected

The following flags are affected by this instruction:
* AZissetif resultis zero; cleared if non-zero.
* AN issetif result is negative; cleared if non-negative.
* Vissetif result saturates; cleared if no saturation.
* VSissetif V isset; unaffected otherwise.

Blackfin DSP Instruction Set Reference 10-45

Arithmetic Operations ”’””"/’@&

10.17.7

10.17.8

10.17.9

10.17.10

10.17.11

10-46

All other flags are unaffected.

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of thisinstruction can beissued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

Example
rl.l =r6+r7(rnd12) ;
rl.l =r6-r7(rd12) ;

rl.h =r6+r7(rnd12) ;
rl.h =r6-r7(rnd12) ;

Also See

Round — Half-Word, Round — 20 Bit, Add

Special Applications

Typically, use the Round — 12 Bit instruction to provide an |EEE 1180—compliant 2D 8x8 inverse
discrete cosine transform.

Blackfin DSP Instruction Set Reference

Bma/(/?@

10.18

10.18.1

10.18.2

10.18.3

10.18.4

10.18.5

10.18.6

Arithmetic Operations

Round — 20 Bit

General Form
dest reg=src_reg_0+ src_reg_1 (RND20)
dest reg=src reg_0-src reg 1 (RND20)

Syntax
Dreg_lo_hi = Dreg + Dreg (RND20) ; Il (b)
Dreg_lo_hi = Dreg - Dreg (RND20) ; I (b)

Syntax Terminology

Dreg: RO, ..., R7
Dreg lo_hi: ROL, ..., R7.L,ROH, ..., R7.H

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Round — 20 Bit instruction effectively adds or subtracts two 32-bit values, rounds the result at
bit 20, then extracts bits 31:20 into a 16-bit destination register. Round — 20 Bit supports only
biased rounding, which adds a half LSB (in this case, bit 19) before truncating bits 19:0.

In practice, this instruction right-shifts each input term four bitsto prevent overflow of the result,
adds or subtracts the two terms, then rounds the result on bit position 16. The instruction saves the
upper 16 hits of the number.

The RND_MOD bit in the ASTAT register has no bearing on the rounding behavior of this
instruction.

See Section 1.5.6, “Rounding and Truncating,” on page 1-7 for a description of rounding behavior.

Flags Affected

The following flags are affected by this instruction:
* AZissetif result is zero; cleared if non-zero.
* AN issetif result is negative; cleared if non-negative.

* Viscleared.

All other flags are unaffected.

Blackfin DSP Instruction Set Reference 10-47

Arithmetic Operations ”’””"/’@&

10.18.7

10.18.8

10.18.9

10.18.10

10.18.11

10-48

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of this instruction can beissued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

Example
rl.l =r6+r7(rnd20) ;
rl.l =r6-r7(rd20) ;

rl.h = r6+r7(rnd20) ;
r1.h = r6-r7(rnd20) ;

Also See

Round — 12 Bit, Round — Half-Word, Add

Special Applications

Typically, use the Round 20 — Bit instruction to provide an |EEE 1180—compliant 2D 8x8 inverse
discrete cosine transform.

Blackfin DSP Instruction Set Reference

Bma/(/?@

10.19

10.19.1

10.19.2

10.19.3
10.19.4

10.19.5

10.19.6

Arithmetic Operations

Saturate

General Form

dest reg = src_reg (S)

Syntax

A0=A0(9); 11 (b)

Al=AL1(S); 11 (b)

Al1=A1(S),A0=A0(S); [* signed saturate both Accumulators at

the 32-bit boundary (b) */

Syntax Terminology

None

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Saturate instruction saturates the 40-bit Accumulators at 32 bits. The resulting saturated value
is sign extended into the Accumulator extension bits.

See Section 1.5.5, “ Saturation,” on page 1-6 for a description of saturation behavior.

Flags Affected

Thisinstruction affects flags as follows:

* AZissetif result is zero; cleared if non-zero. In the case of two simultaneous operations, AZ
represents the logical “OR” of the two.

* AN issetif result is negative; cleared if non-negative. n the case of two simultaneous
operations, AN representsthe logical “OR” of the two.

* AVOissetif result saturates and the dest_reg is AO; cleared if no overflow.
* AVOSissetif AVOis set; unaffected otherwise.
* AVlissetif result saturates and the dest_regis Al; cleared if no overflow.
* AVI1Sissetif AV1isset; unaffected otherwise.

All other flags are unaffected.

Blackfin DSP Instruction Set Reference 10-49

Arithmetic Operations

10.19.7

10.19.8

10.19.9

10.19.10

10.19.11

10-50

Required Mode

User & Supervisor

Parallel Issue

Blﬂl.’l(/r@&

The 32-bit versions of this instruction can beissued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

Example
a0=20(s);

al=al(s);
al=al(s),a0=a0(s);

Also See

Subtract (saturate options), Add (saturate options)

Special Applications

None

Blackfin DSP Instruction Set Reference

Bma/(/?@

10.20

10.20.1

10.20.2

10.20.3

10.20.4

10.20.5

Sign Bit

General Form

dest_reg = SIGNBITS sample_register

Syntax

Dreg_lo=SIGNBITS Dreg ;
Dreg_lo=SIGNBITS Dreg_lo_hi ;
Dreg_lo=SIGNBITSAOQ;
Dreg_lo=SIGNBITSAL1;

Syntax Terminology
Dreg: RO, ..., R7
Dreg_lo: RO.L, ..., R7.L

Dreg lo_hi: ROL, ...,R7.L,ROH, ..., R7.H

Instruction Length

Arithmetic Operations

/1 32-bit sample (b)
/1 16-bit sample (b)
/1 40-bit sample (b)
/1 40-bit sample (b)

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Sign Bit instruction returns the number of sign bitsin anumber, and can be used in

conjunction with a shift to normalize numbers. It can operate on 16-hit, 32-bit, or 40-bit input

numbers.

* For a16-bit input, Sign Bit returns the number of leading signbits minus one, which isin the
range 0 to 15. There are no special cases: An input of all zeros returns +15 (all sign bits), and

an input of all ones also returns +15.

¢ For a32-bit input, Sign Bit returns the number of leading signbits minus one, whichisin the

range 0to 31. Aninput of al zerosor al onesreturns +31 (al sign bits).

* For a40-bit Accumulator input, Sign Bit returns the number of leading signbits minus 9,

whichisin therange -8 to 31. A negative number is returned when the result in the

Accumulator has expanded into the extension bits; the corresponding normalization will shift
the result down to a 32-hit quantity (losing precision). Aninput of al zerosor all onesreturns

+31.

Theresult of the SIGNBITS instruction can be used directly as the argument to ASHIFT to

normalize the number. Resultant numberswill bein the following formats (S == signbit, M ==

magnitude hit).

Blackfin DSP Instruction Set Reference

10-51

Arithmetic Operations ”’””"/’@&

10.20.6

10.20.7

10.20.8

10.20.9

10.20.10

10.20.11

10-52

16-hit: S.MMM MMMM MMMM MMMM
32-hit: S.MMM MMMM MMMM MMMM MMMM MMMM MMMM MMMM
40-bit: SSSS SSsS S.MMM MMMM MMMM MMMM MMMM MMMM MMMM MMMM

In addition, the SIGNBITS result can be subtracted directly to form the new exponent.

The Sign Bit instruction does not implicitly modify the input value. For 32-bit and 16-bit input, the
dest_reg and sample_register can be the same D-register. So doing explicitly modifies the
sample_register.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of this instruction can be issued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

Example

r2.| =signbitsr7;
rl.l =signbitsr5.l ;
r0.| =signbitsr4.h;

ré.| = signbitsa0 ;
r5.1 =signbitsal ;
Also See

Exponent Detection

Special Applications

You can use the exponent as shift magnitude for array normalization. You can accomplish
normalization by using the ASHIFT instruction directly, without using special normalizing
instructions, as required on other architectures.

Blackfin DSP Instruction Set Reference

Bma/(/?@ Arithmetic Operations

10.21 Subtract

10.21.1 General Form

dest reg=src reg_1-src reg 2

10.21.2 Syntax

32-BIT OPERANDS, 32-BIT RESULT

Dreg = Dreg - Dreg ; * no saturation support but shorter instruction
length (&) */
Dreg = Dreg - Dreg (sat_flag) ; /* saturation optionally supported, but at the cost

of longer instruction length (b) */
16-BIT OPERANDS, 16-BIT RESULT

Dreg_lo_hi = Dreg_lo_hi —Dreg_lo_hi (sat_flag) ; // (b)

10.21.3 Syntax Terminology
Dreg: RO, ..., R7
Dreg_lo_hi: ROL, .., R7.L,ROH, .., R7.H

sat_flag: non-optional saturation flag, (S) or (NS)

10.21.4 Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length. Comment (b) identifies 32-bit
instruction length.

10.21.5 Functional Description

The Subtract instruction subtracts src_reg 2 from src_reg_1 and places the result in a destination
register.

There are two ways to specify subtraction on 32-bit data. One that is 16-bit instruction length does
not support saturation. The other instruction, which is 32-bit instruction length, optionally supports
saturation. The larger DSP instruction can sometimes save execution time because it can be issued
in parallel with certain other instructions. See “Parallel 1ssue”.

Theinstructions for 16-bit data use half-word data register operands and store the result in a half-
word data register.

All theinstructions for 16-bit data are 32-bit instruction length.

In the syntax, where sat_flag appears, substitute one of the following values:
¢ (S) —saturate the result

Blackfin DSP Instruction Set Reference 10-53

Arithmetic Operations ”’””"/’@&

10.21.6

10.21.7

10.21.8

10.21.9

10.21.10

10-54

* (NS) —no saturation
See Section 1.5.5, “ Saturation,” on page 1-6 for a description of saturation behavior.

The Subtract instruction has no subtraction equivalent of the addition syntax for P-registers.

Flags Affected

Thisinstruction affects flags as follows:
* AZissetif result is zero; cleared if non-zero.
* AN issetif result is negative; cleared if non-negative.
* ACOissetif the operation generates a carry; cleared if no carry.
* Vissetif result overflows; cleared if no overflow.
* VSissetif V is set; unaffected otherwise.

All other flags are unaffected.

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of thisinstruction can beissued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

The 16-bit versions of this instruction cannot be issued in parallel with other instructions.

Example

r5=r2-rl; /I 16-bit instruction length subtract, no saturation

r5=r2-rl(ns); /* same result as above, but 32-bit instruction
length */

r5=r2-ri(s); /I saturate the result

r4.l =r0.l - r7. (ns) ;

rd.l =r0.l -r7.h (s); /I saturate the result
ro.l =r2.h-r4.l(ns);

rll=r3.h-r7.h(ns);

r4.h=r0. - r7.1(ns);

r4.h=r0.-r7.h(ns);

ro.h=r2.h-r4l(s); /l saturate the result
rl.h=r3.h-r7.h(ns);

Also See

Modify — Decrement, Vector Add/Subtract (in “Vector Operations’ chapter)

Blackfin DSP Instruction Set Reference

Bma/(/?@ Arithmetic Operations

10.21.11 Special Applications

None

Blackfin DSP Instruction Set Reference 10-55

Arithmetic Operations ”’””"/’@&

10.22 Subtract Immediate

10.22.1 General Form

register -= constant

10.22.2 Syntax

Ireg-=2; /* decrement Ireg by 2, half-word address
pointer increment (a) */

lreg-=4; // word address pointer decrement (a)

10.22.3 Syntax Terminology

Ireg: 10, ..., 13

10.22.4 Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

10.22.5 Functional Description

The Subtract Immediate instruction subtracts a constant value from anlndex register without
saturation.

Note: To subtract immediate values from D-registers or P-registers, use a negative constant in the Add
Immedi ate instruction.

10.22.6 Flags Affected

None

10.22.7 Required Mode

User & Supervisor

10.22.8 Parallel Issue

The 16-bit versions of thisinstruction can beissued in parallel with specific other instructions. For
details, see Chapter 15, “Issuing Parallel Instructions.”

10-56 Blackfin DSP Instruction Set Reference

Bma/(/?@

10.22.9 Example
i0-=4;

i2-=2;

10.22.10 Also See

Add Immediate, Subtract

10.22.11 Special Applications

None

Blackfin DSP Instruction Set Reference

Arithmetic Operations

10-57

Arithmetic Operations ”’””"/’@&

10-58 Blackfin DSP Instruction Set Reference

EXTERNAL EVENT MANAGEMENT 11

Instruction Summary

This chapter discusses the instructions that manage external events. Users can take advantage of
these instructions to enable interrupts, force a specific interrupt or reset to occur, or put the
processor in idle state. The Core Synchronize instruction resolves all pending operations and
flushes the core store buffer before proceeding to the next instruction. The System Synchronize
instruction forces all speculative, transient states in the core and system to compl ete before
processing continues. Other instructions in this chapter force an emulation exception, placing the
processor in Emulation mode, test the value of a specific, indirectly addressed byte, or increment
the Program Counter without performing useful work.

I R o | = OSSOSO 11-2
11.2 COre SYNCHIONIZE ..o 11-4
11.3 SySteM SYNCHIONIZE ..o e e 11-6
114 FOrce EMUIBLION ..c.ooveriiiiiiiieiisie ettt sene e 11-8
115 Disable INTEITUPLS c.ooveviiieieeie et 11-10
116 ENBDIE INLEITUPLS ..o 11-12
117 Force INterrupt / RESELceooiiieeiiiee et 11-14
11.8 FOrce EXCEPLION ..ottt s e e 11-16
119 Test and Set Byte (ALOMIC)ooveveeueeiiiirierenie e e e 11-18
0 0 o @ o TSSO 11-20

Blackfin DSP Instruction Set Reference 11-1

External Event Management an/(/?@&

11.1

11.1.1

11.1.2

11.1.3

11.1.4

11.1.5

11.1.6

11.1.7

11.1.8

11-2

Idle

General Form

IDLE

Syntax

IDLE ; I (a)

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

Typically, the Idleinstruction is part of a sequence to place the Blackfin in a quiescent state so that
the external system can switch between core clock frequencies.

The Idle instruction requests an idle state by setting the idle_req bit in SEQSTAT register. Setting
theidle_req bit precedes placing the Blackfin in a quiescent state. If you intend to place the
processor in Idle mode, the IDLE instruction must immediately precede a SSY NC instruction.

Thefirst instruction following the SSCY NC is the first instruction to execute when the processor
recovers from Idle mode.

The Idleinstruction is the only way to set theidle req bit in SEQSTAT. The architecture does not
support explicit writesto SEQSTAT.

Flags Affected

None

Required Mode

The Idleinstruction executes only in Supervisor mode. If execution is attempted in User mode, the
instruction produces an Illegal Use of Protected Resource exception.

Parallel Issue

Thisinstruction cannot be issued in parallel with other instructions.

Example

idle;

Blackfin DSP Instruction Set Reference

Bma/(/?@ External Event Management

11.1.9 Also See

System Synchronize

11.1.10 Special Applications

Blackfin DSP Instruction Set Reference 11-3

External Event Management ”’””"/’@&

11.2

11.2.1

11.2.2

11.2.3

11.2.4

11.2.5

11.2.6

11.2.7

11.2.8

11-4

Core Synchronize

General Form

CSYNC

Syntax

CSYNC:; I (a)

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

The Core Synchronize (CSY NC) instruction ensures resolution of all pending core operations and
the flushing of the core store buffer before proceeding to the next instruction. Pending core
operations include any speculative states (for example, branch prediction) or exceptions. The core
store buffer lies between the processor and the L1 cache memory.

CCYNC istypically used after core MMR writesto prevent imprecise behavior.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The Core Synchronize instruction cannot be issued in parallel with other instructions.

Example

Consider the following example code sequence.

if cc jump away_from_here ; /I produces speculative branch prediction
csync;
ro=[pQ] ; // load

Blackfin DSP Instruction Set Reference

Bma/(/?@

11.2.9

11.2.10

External Event Management

In this example, the CSY NC instruction ensures that the load instruction is not executed
speculatively. CSY NC ensures that the conditional branch is resolved and any entriesin the
processor store buffer have been flushed. In addition, all speculative states or exceptions complete
processing before CSY NC compl etes.

Also See

System Synchronize

Special Applications

Use CSYNC to enforce a strict execution sequence on loads and stores or to conclude all
transitional core states before reconfiguring the core modes. For example, issue CSYNC before
configuring memory-mapped registers (MMRs). CSY NC should also be issued after storesto
MM Rs to make sure the data reaches the MMR before the next instruction is fetched.

Typically, the Blackfin executes all load instructions strictly in the order that they are issued and all
store instructions in the order that they areissued. However, for performance reasons, the
architecture relaxes ordering between load and store operations. It usually allows load operations
to access memory out of order with respect to store operations. Further, it usually allows loadsto
access memory speculatively. The core may later cancel or restart speculative loads. By using the
Core Synchronize or System Synchronize instructions and managing interrupts appropriately, you
can restrict out-of-order and speculative behavior.

Note that stores never access memory speculatively.

Blackfin DSP Instruction Set Reference 11-5

External Event Management an/(/?@&

11.3

11.3.1

11.3.2

11.3.3

11.3.4

11.3.5

11.3.6

11.3.7

11-6

System Synchronize

General Form

SSYNC

Syntax

SSYNC; I (a)

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

The System Synchronize (SSY NC) instruction forces all speculative, transient statesin the core
and system to compl ete before processing continues. Until SSY NC completes, no further
instructions can be issued to the pipeline.

The SSY NC instruction performs the same function as Core Synchronize (CSY NC). In addition,
SSY NC flushes any write buffers (between the L1 memory and the system interface) and generates
a Synch request signal to the external system. The operation requires an acknowledgement
Synch_Ack signal by the system before completing the instruction.

If theidle_req bit of the SEQSTAT register is set when SSYNC is executed, the processor enters
Idle state and asserts the external Idle signal after receiving the external Synch_Ack signal. After
the external Idle signal is asserted, exiting the I dle state requires an external Wakeup signal.

SSY NC should be issued immediately before and after writing to a system MMR. Otherwise, the

MMR change can take effect at an indeterminate time while other instructions are executing,
resulting in imprecise behavior.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The SSY NC instruction cannot be issued in parallel with other instructions.

Blackfin DSP Instruction Set Reference

Bma/(/?@ External Event Management

11.3.8 Example

Consider the following example code sequence.

if cc jump away_from_here ; /I produces speculative branch prediction
ssync;
ro=[pQ] ; /l'load

In this example, SSYNC ensures that the load instruction will not be executed speculatively. The
instruction ensures that the conditional branch is resolved and any entries in the processor store
buffer and write buffer have been flushed. In addition, all exceptions complete processing before
SSYNC compl etes.

11.3.9 Also See

Core Synchronize, Idle

11.3.10 Special Applications

Typically, SSYNC prepares the architecture for clock cessation or frequency change. In such cases,
the following instruction sequenceistypical:

instruction...

instruction...

CLIfO; /I disable interrupts

ide; [/l enable Idle state

ssync; /* conclude all speculative states, assert
external Sync signal, await Synch_Ack,
then assert external Idle signal and stall
in the Idle state until the Wakeup signal.
Clock input can be modified during the
stall. */

stir0; /* re-enabl e interrupts when Wakeup
occurs*/

instruction...

instruction...

Blackfin DSP Instruction Set Reference 11-7

External Event Management ”’””"/’@&

11.4 Force Emulation

11.4.1 General Form

EMUEXCPT

11.4.2 Syntax

EMUEXCPT ; I1'(@)

11.4.3 Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

11.4.4 Functional Description

The Force Emulation instruction forces an emulation exception, thus alowing the processor to
enter emulation mode.

When emulation is enabled, the processor immediately takes an exception into emulation mode.
When emulation is disabled, EMUEXCPT generates an illegal instruction exception.

An emulation exception is the highest priority event in the processor.

11.4.5 Flags Affected

None

11.4.6 Required Mode

User & Supervisor

11.4.7 Parallel Issue

The Force Emulation instruction cannot be issued in parallel with other instructions.

11.4.8 Example

emuexcpt ;

11.4.9 Also See

Force Interrupt / Reset

11-8 Blackfin DSP Instruction Set Reference

Bma/(/?@ External Event Management

11.4.10 Special Applications

Blackfin DSP Instruction Set Reference 11-9

External Event Management ”’””"/’@&

11.5

1151

11.5.2

11.5.3

11.5.4

11.5.5

11.5.6

11.5.7

11.5.8

11.5.9

11-10

Disable Interrupts

General Form

CLI

Syntax

CLI Dreg; /I previous state of IMASK moved to Dreg (a)

Syntax Terminology

Dreg: RO, ..., R7

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

The Disable Interrupts instruction globally disables general interrupts by setting IMASK to all
zeros. In addition, the instruction copies the previous contents of IMASK into a user-specified
register in order to save the state of the interrupt system.

The Disable Interrupts instruction does not mask NMI, reset, exceptions and emulation.

Flags Affected

None

Required Mode

The Disable Interrupts instruction executes only in Supervisor mode. If execution is attempted in
User mode, the instruction produces an Illegal Use of Protected Resource exception.

Parallel Issue

The Disable Interrupts instruction cannot be issued in parallel with other instructions.

Example

clir3;

Blackfin DSP Instruction Set Reference

Bma/(/?@ External Event Management

11.5.10 Also See

Enable Interrupts

11.5.11 Special Applications

Thisinstruction is often issued immediately before an IDLE instruction.

Blackfin DSP Instruction Set Reference 11-11

External Event Management ”’””"/’@&

11.6

11.6.1

11.6.2

11.6.3

11.6.4

11.6.5

11.6.6

11.6.7

11.6.8

11.6.9

11.6.10

11-12

Enable Interrupts

General Form

STI

Syntax

STI Dreg ; Il previous state of IMASK restored from Dreg (a)

Syntax Terminology

Dreg: RO, ..., R7

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

The Enable Interrupts instruction globally enables interrupts by restoring the previous state of the
interrupt system back into IMASK.

Flags Affected

None

Required Mode

The Enable Interrupts instruction executes only in Supervisor mode. If execution is attempted in
User mode, the instruction produces an Illegal Use of Protected Resource exception.

Parallel Issue

The Enable Interrupts instruction cannot be issued in parallel with other instructions.

Example

stir3;

Also See

Disable Interrupts

Blackfin DSP Instruction Set Reference

Bma/(/?@ External Event Management

11.6.11 Special Applications

Thisinstruction is often located after an IDLE instruction so that it will execute after awakeup
event from the idle state.

Blackfin DSP Instruction Set Reference 11-13

External Event Management an/(/?@&

11.7

11.7.1

11.7.2

11.7.3

11.7.4

11.7.5

11-14

Force Interrupt / Reset

General Form

RAISE

Syntax

RAISE uimm4 ; Il ()

Syntax Terminology

uimmd4: 4-bit unsigned field, with the range of 0 through 15

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

The Force Interrupt / Reset instruction forces a specified interrupt or reset to occur. Typically, itis
a software method of invoking a hardware event for debug purposes.

When the RAISE instruction isissued, the processor setsabit inthe ILAT register corresponding to
the interrupt vector specified by the uimm4 constant in the instruction. The interrupt executes
when its priority is high enough to be recognized by the processor. Thisinstruction causes these
events to occur given the uimm4 arguments shown:

0. <reserved>
RST

NMI
<reserved>
<reserved>
IVHW
IVTMR
ICG7
IVG8
IVG9

. 1IVG10
.IVG11
.IVG12
.1IVG13

© © N o g s~ w DN PP

I i el
w N B O

Blackfin DSP Instruction Set Reference

Bma/(/?@

11.7.6

11.7.7
11.7.8
11.7.9

11.7.10

11.7.11

External Event Management

14.1VG14
15.1VG15

The Force Interrupt / Reset instruction cannot invoke Exception (EXC) or Emulation (EMU)
events; use the EXCPT and EMUEXCPT instructions, respectively, for those events.

The RAISE instruction does not take effect before the write-back stage in the pipeline.

Flags Affected

None

Required Mode

The Force Interrupt / Reset instruction executes only in Supervisor mode. If execution is attempted
in User mode, the Force Interrupt / Reset instruction produces an I1legal Use of Protected Resource
exception.

Parallel Issue

The Force Interrupt / Reset instruction cannot be issued in parallel with other instructions.

Example

raisel; /I Invoke RST

raise6; /I lnvoke IVTMR timer interrupt
Also See

Force Exception (EXCPT), Force Emulation (EMUEXCPT)

Special Applications

Blackfin DSP Instruction Set Reference 11-15

External Event Management ”’””"/’@&

11.8

11.8.1

11.8.2

11.8.3

11.8.4

11.8.5

11.8.6

11.8.7

11.8.8

11.8.9

11-16

Force Exception

General Form

EXCPT

Syntax

EXCPT uimm4 ; Il ()

Syntax Terminology

uimmd4: 4-bit unsigned field, with the range of 0 through 15

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

The Force Exception instruction forces an exception with code uimm4. When the EXCPT
instruction isissued, the sequencer vectors to the exception handler that the user provides.

Application-level code uses the Force Exception instruction for operating system calls. The
instruction does not set the EVSW bit (bit 3) of the ILAT register.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The Force Exception instruction cannot be issued in parallel with other instructions.

Example

excpt4;

Blackfin DSP Instruction Set Reference

Bma/(/?@ External Event Management

11.8.10 Also See

11.8.11 Special Applications

Blackfin DSP Instruction Set Reference 11-17

External Event Management an/(/?@&

11.9

11.9.1

11.9.2

11.9.3

1194

11.95

11-18

Test and Set Byte (Atomic)

General Form

TESTSET

Syntax

TESTSET (Preg) ; 11 (a)

Syntax Terminology

Preg: PO, ..., P5 (SP and FP are not allowed as the register for this instruction)

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

The Test and Set Byte (Atomic) instruction loads an indirectly addressed memory byte, tests
whether it is zero, then sets the most significant bit of the memory byte without affecting any other
bits. If the byteis originally zero, the instruction sets the CC hit. If the byte is originally non-zero
the instruction clears the CC bit. The sequence of this memory transaction is atomic.

TESTSET accesses the entire logical memory space except the core Memory-M apped Register
(MMR) address region. The system design must ensure atomicity for all memory regions that
TESTSET may access. The hardware does not perform atomic accessto L1 memory space
configured as SRAM. Therefore, semaphores must not reside in on-core memory.

The memory architecture always treats atomic operations as cache-inhibited accesses, even if the
CPLB descriptor for the address indicates a cache-enabled access. If acache hit is detected, the
operation flushes and invalidates the line before allowing the TESTSET to proceed.

The software designer is responsible for executing atomic operations in the proper cacheable / non-
cacheable memory space. Typically, these operations should execute in non-cacheable, off-core
memory. In a chip implementation that requires tight tempora coupling between processors or
processes, the design should implement a dedicated, non-cacheable block of memory that meets
the data latency requirements of the system.

TESTSET can be interrupted before the load portion of the instruction completes. If interrupted,
the TESTSET will be re-executed upon return from the interrupt. After the test, or load, portion of
the TESTSET completes, the TESTSET sequence cannot be interrupted. For example, any
exceptions associated with the CPLB |ookup for both the load and store operations must be
completed before the load of the TESTSET compl etes.

Blackfin DSP Instruction Set Reference

Bma/(/?@

11.9.6

11.9.7
11.9.8

11.9.9

11.9.10

11.9.11

External Event Management

Theintegrity of the TESTSET atomicity depends on the L2 memory resource-locking mechanism.
If the L2 memory does not support atomic locking for the address region you are accessing, your
software has no guarantee of correct semaphore behavior. See the processor L2 memory
documentation for more on the locking support.

Flags Affected

Thisinstruction affects flags as follows:
* CCissetif addressed valueis zero; cleared if non-zero.

All other flags are unaffected.

Required Mode

User and Supervisor

Parallel Issue

The TESTSET instruction cannot be issued in parallel with other instructions.

Example

testset (p1) ;

The TESTSET instruction may be preceded by a CSYNC or SSYNC instruction to ensure that all
previous exceptions or interrupts have been processed before the atomic operation begins.

Also See

Core Synchronize, System Synchronize

Special Applications

Typically, use TESTSET as a semaphore sampling method between co-processors or co-processes.

Blackfin DSP Instruction Set Reference 11-19

External Event Management ”’””"/’@&

11.10

11.10.1

11.10.2

11.10.3

11.10.4

11.10.5

11.10.6

11.10.7

11.10.8

11-20

No Op

General Form

NOP
MNOP

Syntax

NOP; I (@)
MNOP; 11 (b)

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length. Comment (b) identifies 32-bit
instruction length.

Functional Description

The No Op instruction increments the PC and does nothing else.

Typically, the No Op instruction allows previous instructions time to complete before continuing
with subsequent instructions. Other uses are to produce specific delaysin timing loops or to act as
hardware event timers and rate generators when no timers and rate generators are available.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The 16-bit versions of this instruction can be issued in parallel with specific other instructions. For
details, see Chapter 15, “Issuing Parallel Instructions.”

Example
nop ;

mnop ;

Blackfin DSP Instruction Set Reference

Bma/(/?@ External Event Management

11.10.9 Also See

11.10.10 Special Applications

MNOP can be used to issue loads or store instructionsin parallel without invoking a 32-bit MAC
or ALU operation. Refer to Chapter 15, “Issuing Parallel Instructions,” for more information.

Blackfin DSP Instruction Set Reference 11-21

External Event Management an/(/?@&

11-22 Blackfin DSP Instruction Set Reference

CACHE CONTROL 12

Instruction Summary

This chapter discusses the instructions that control cache. Users can take advantage of these
instructions to prefetch or flush the data cache, invalidate data cache lines, or flush the instruction

cache.
12.1 DataCache PrefetChcoceeiieeeeeceeeeeeeeeeee ettt e s ean e e e e s s 12-2
12.2 DataCache FIUSNooooeeiiieeee e s 12-4
12.3 DataCache Line INVAIITAEccoveeeeeeieeeeee et eee e s e eee e s 12-6
12.4 InStruction Cach@ FIUSNceeiiiiie et 12-8

Blackfin DSP Instruction Set Reference 12-1

Cache Control ”’””"/’@&

12.1

12.1.1

12.1.2

12.1.3

12.1.4

12.1.5

12.1.6

12.1.7

12.1.8

12-2

Data Cache Prefetch

General Form

PREFETCH

Syntax

PREFETCH [Preg] ; I/ indexed (@)

PREFETCH [Preg ++] ; // indexed, post increment (a)

Syntax Terminology

Preg: PO, ..., P5, SP, FP

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

The Data Cache Prefetch instruction causes the data cache to prefetch the cacheline that is
associated with the effective addressin the P-register. The operation causesthe lineto be fetched if
itisnot currently in the data cache and if the addressis cacheable (that is, if bit CPLB_L1 CHBL
=1). If thelineisaready in the cache or if the cacheis already fetching aline, the prefetch
instruction performs no action, like a NOP.

Option: The instruction can post-increment the line pointer by the cache-line size.

Thisinstruction does not cause address exception violations. If a protection violation associated
with the address occurs, the instruction acts as a NOP and does not cause a protection violation
exception.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

Thisinstruction cannot be issued in parallel with other instructions.

Blackfin DSP Instruction Set Reference

Bma/(/?@

12.1.9 Example
prefetch [p2] ;
prefetch [pO++1] ;

12.1.10 Also See

12.1.11 Special Applications

Blackfin DSP Instruction Set Reference

Cache Control

12-3

Cache Control ”’””"/’@&

12.2

12.2.1

12.2.2

12.2.3

12.2.4

12.2.5

12.2.6

12.2.7

12.2.8

12-4

Data Cache Flush

General Form

FLUSH

Syntax

FLUSH [Preg]; I/l indexed (@)

FLUSH [Preg ++1] ; /l indexed, post increment (a)

Syntax Terminology

Preg: PO, ..., P5, SP, FP

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

The Data Cache Flush instruction causes the data cache to synchronize the specified cache line
with higher levels of memory. Thisinstruction selects the cache line corresponding to the effective
address contained in the P-register. If the cached dataline is dirty, the instruction writestheline out
and marksthe line clean in the data cache. If the specified data cache lineis already clean or the
cache does not contain the addressin the P-register, thisinstruction performs no action, like aNOP.
Option: Theinstruction can post-increment the line pointer by the cache-line size.

Thisinstruction does not cause address exception violations. If a protection violation associated
with the address occurs, the instruction acts as a NOP and does not cause a protection violation
exception.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

Theinstruction cannot be issued in parallel with other instructions.

Blackfin DSP Instruction Set Reference

Bma/(/?@ Cache Control

12.2.9 Example
flush[p2];
flush[pO++1];

12.2.10 Also See

12.2.11 Special Applications

Blackfin DSP Instruction Set Reference 12-5

Cache Control ”’””"/’@&

12.3

12.3.1

12.3.2

12.3.3

12.3.4

12.3.5

12.3.6

12.3.7

12.3.8

12-6

Data Cache Line Invalidate

General Form

FLUSHINV

Syntax

FLUSHINV [Preg] ; Il indexed (@)

FLUSHINV [Preg ++1]; /l indexed, post increment (a)

Syntax Terminology

Preg: PO, ..., P5, SP, FP

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

The Data Cache Line Invalidate instruction causes the data cache to invalidate a specific linein the
cache. The contents of the P-register specify thelineto invalidate. If the lineisin the cache and
dirty, the cache-line is written out to the next level of memory in the hierarchy. If thelineisnotin
the cache, the instruction performs no action, like aNOP.

Option: The instruction can post-increment the line pointer by the cache-line size.

Thisinstruction does not cause address exception violations. If a protection violation associated
with the address occurs, the instruction acts as a NOP and does not cause a protection violation
exception.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The Data Cache Line Invalidate instruction cannot be issued in parallel with other instructions.

Blackfin DSP Instruction Set Reference

Bma/(/?@

12.3.9 Example
flushinv [p2] ;
flushinv [pO ++1] ;

12.3.10 Also See

12.3.11 Special Applications

Blackfin DSP Instruction Set Reference

Cache Control

12-7

Cache Control ”’””"/’@&

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.4.8

12-8

Instruction Cache Flush

General Form

IFLUSH

Syntax

IFLUSH [Preg]; I/l indexed (@)

IFLUSH [Preg ++] ; /l indexed, post increment (a)

Syntax Terminology

Preg: PO, ..., P5, SP, FP

Instruction Length

In the syntax, comment (@) identifies 16-bit instruction length.

Functional Description

The Instruction Cache Flush instruction causes the instruction cache to invalidate a specific linein
the cache. The contents of the P-register specify the line to invalidate. The instruction cache
contains no dirty bit. Consequently, the contents of the instruction cache are never flushed to higher
levels.

Option: The instruction can post-increment the line pointer by the cache-line size.

This instruction does not cause address exception violations. If a protection violation associated
with the address occurs, the instruction acts as a NOP and does not cause a protection violation
exception.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

Thisinstruction cannot be issued in parallel with other instructions.

Blackfin DSP Instruction Set Reference

Bma/(/?@ Cache Control

12.4.9 Example
iflush [p2] ;
iflush[pO++17;

12.4.10 Also See

12.4.11 Special Applications

Blackfin DSP Instruction Set Reference 12-9

Cache Control ”’””"/’@&

12-10 Blackfin DSP Instruction Set Reference

VIDEO PIXEL OPERATIONS

13

Instruction Summary

This chapter discusses the instructions that manipulate video pixels. Users can take advantage of
these instructions to align bytes, disable exceptions that result from misaligned 32-bit memory

accesses, and perform dual and quad 8- and 16-bit add, subtract, and averaging operations.

131 BYLEALIGN ittt e et
13.2 Disable Alignment Exception for LOadc.ccocvvvvevvrenereeseseeneseeneneens
13.3 Dua 16-Bit A/ ClIP wivveerceiiee et e
13.4 Dual 16-Bit Accumulator Extraction with Additionc.cccevevrrenn
135 QUad 8-Bit Add ...ceoeeiieiieeeeee e
136 Quad 8-Bit AVErage — BYLEceccveieeeiiceee et
13.7 Quad 8-Bit Average — Half-Wordccccoveiieiieienieere e
13.8 QUE 8-Bit PACKevviiieiiiiiiriiiecees e
139 Quad 8-Bit SUDEIECEcvvvveviieiiieiisieiesiee e
13.10 Quad 8-Bit Subtract-Absolute-AccumUIatecoeeeeiieveieeiecieieeens
1311 Quad 8-Bit UNPACKecoiiiiiiiiiie et

Blackfin DSP Instruction Set Reference

13-1

Video Pixel Operations ”’””"/’@&

13.1

13.1.1

13.1.2

13.1.3

13.1.4

13.1.5

13-2

Byte Align

General Form

dest reg=ALIGNS8 (src_reg_1, src_ reg 0)
dest reg=ALIGN16 (src_reg 1, src_reg 0)
dest reg=ALIGN24 (src_reg 1, src_reg 0)

Syntax

Dreg = ALIGNS8 (Dreg, Dreg) ; /I overlay 1 byte (b)
Dreg = ALIGN16 (Dreg, Dreg) ; Il overlay 2 bytes (b)
Dreg = ALIGN24 (Dreg, Dreg) ; /I overlay 3 bytes (b)

Syntax Terminology

Dreg: RO, ..., R7

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Byte Align instruction copies a contiguous four-byte unaligned word from a combination of
two dataregisters. Theinstruction version determines the bytes that are copied, in other words, the
byte-alignment of the copied word.

Alignment options are.

src_reg_1 src_reg_0

byte7 byte6 byte5 byte4 byte3 byte2 bytel byteO

dest_reg for ALIGNS: byte4 byte3 byte2 bytel

dest_reg for ALIGN16: byte5 byted byte3 byte2

dest_reg for ALIGN24: byte6 byte5 byte4 byte3

Blackfin DSP Instruction Set Reference

Bma/(/?@

13.1.6
13.1.7

13.1.8

13.1.9

13.1.10

13.1.11

Video Pixel Operations

The“ALIGN16” version performs the same operation as the Vector Pack instruction using the
dest reg = PACK (Dreg_lo, Dreg_hi) syntax.

Use the Byte Align instruction to align data bytes for subsequent single-instruction, multiple-data
(SIMD) instructions.

Theinput values are not implicitly modified by thisinstruction. The destination register can be the
same D-register as one of the source registers. Doing so explicitly modifies that source register.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of this instruction can be issued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

Example
/I'1f r3 = OXABCD 1234 and r4 = OXBEEF DEAD, then . ..
ro=align8 (r3, r4) ; /I . .. producesrO = 0x34BE EFDE,
rO =alignl6 (r3, r4) ; Il ... producesrO = 0x1234 BEEF, and
rO=align24 (r3, r4) ; /... producesrO = 0xCD12 34BE,
Also See
Vector Pack

Special Applications

Blackfin DSP Instruction Set Reference 13-3

Video Pixel Operations ”’””"/’@&

13.2

13.2.1

13.2.2

13.2.3

13.2.4

13.2.5

13.2.6

13.2.7

13.2.8

13-4

Disable Alignment Exception for Load

General Form

DISALGNEXCPT

Syntax

DISALGNEXCPT ; 11 (b)

Syntax Terminology

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Disable Alignment Exception for Load (DISALGNEXCPT) instruction prevents exceptions
that would otherwise be caused by misaligned 32-bit memory loadsissued in parallel. This
instruction only affects misaligned 32-bit load instructions that use I-register indirect addressing.

In order to force address alignment to a 32-bit boundary, the 2 LSB’s of the address are cleared
before being sent to the memory system. The I-register is not modified by the DISALIGNEXCPT
instruction. Also, any modifications performed to the |-register by a parallel instruction are not
affected by the DISALIGNEXCPT instruction.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of thisinstruction can beissued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

Blackfin DSP Instruction Set Reference

Bma/(/?@ Video Pixel Operations

13.2.9 Example

disalgnexcpt || r1 = [i0++] || r3 =[i1++] ; /I three instructionsin parallel

disalgnexcpt || [pO ++ p1] =r5 || r3 =[i1++4] ; /* alignment exception is prevented only
for the load */

disalgnexcpt || rO = [p2++] || r3 = [i1++] ; /* alignment exception is prevented only

for the I-reg load */

13.2.10 Also See

Any Quad 8-Bit instructions, Section 13.1, “Byte Align,” on page 13-2

13.2.11 Special Applications

Use the DISALGNEXCPT instruction when priming data registers for Quad 8-Bit single-
instruction multiple-data (SIMD) instructions.

Quad 8-Bit SIMD instructions require as many as 16 8-bit operands, four D-registers worth, to be
prel oaded with operand data. The operand datais 8-bit and not necessarily word aligned in
memory. Thus, use DISALGNEXCPT to prevent spurious exceptions for these potentially
misaligned accesses.

During execution, when Quad 8-Bit SIMD instructions perform 8-hit-boundary accesses, they
automatically prevent exceptions for misaligned accesses. No user intervention is required.

Blackfin DSP Instruction Set Reference 13-5

Video Pixel Operations ”’””"/’@&

13.3

13.3.1

13.3.2

13.3.3

13.3.4

13.3.5

13-6

Dual 16-Bit Add / Clip

General Form

dest reg=BYTEOP3P (src_reg 0,src reg 1) (LO)
dest reg=BYTEOP3P (src reg 0,src reg 1) (HI)
dest reg=BYTEOP3P (src reg 0,src reg 1) (LO, R)
dest reg=BYTEOP3P (src reg O,src reg 1) (HI, R)

Syntax

/I forward byte order operands
Dreg = BY TEOP3P (Dreg_pair,Dreg_pair) (LO) ; // sum into low bytes (b)
Dreg = BY TEOP3P (Dreg_pair,Dreg_pair) (HI) ; // sum into high bytes (b)

/I reverse byte order operands

Dreg = BY TEOP3P (Dreg_pair,Dreg_pair) (LO, R) ; // sum into low bytes (b)
Dreg = BY TEOP3P (Dreg_pair,Dreg_pair) (HI, R) ; // sum into high bytes (b)
Syntax Terminology

Dreg: RO, ..., R7

Dreg_pair: R1.0, R3:2, only

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Dual 16-Bit Add/ Clip instruction adds two 8-bit unsigned values to two 16-bit signed values,
then limits (or “clips”) the result to the 8-bit unsigned range 0 — 255, inclusive. The instruction
|oads the results as bytes on half-word boundariesin one 32-bit destination register. Some syntax
options load the upper byte in the half-word and others load the lower byte, as shown below.

Assuming the source registers contain:

3l 24 23..iiis 16 15, 87 s 0
aligned_src_reg_
0: vyl yo
aligned_src_reg_
T z3 z2 z1 z0

Blackfin DSP Instruction Set Reference

Video Pixel Operations

Bma/(/?@

...the versions that load the result into the lower byte —“(LO)” — produce:

y0 + z1 clipped
to 8 bits

y1+z3 clipped

dest_reg: 0..... 0 t0 8 bits

...and the versions that load the result into the higher byte—*“(HI)” — produce:

yO0 + 20 clipped

y1 + 22 clipped 0
to 8 bits

dest_reg: t0 8 bits

In either case, the unused bytes in the destination register are filled with 0x00.

The 8-bit and 16-bit addition is performed as a signed operation. The 16-bit operand is sign-
extended to 32 bits before adding.

The only valid input source register pairs are R1:0 and R3:2.

Thisinstruction provides byte-alignment directly in the source register pairs R1:0 and R3:2 based
onthelOand I1 registers.

¢ Thetwo LSB's of the 10 register determine the byte-alignment for source register pair R1:0.
¢ Thetwo LSB'sof the |1 register determine the byte-alignment for source register pair R3:2.

The relationship between the I-register bits and the byte-alignment is illustrated below.

In the default source order case (i.e., not the (—, R) syntax), assuming a source register pair
contains the following:

src_reg_pair_HI src_reg_pair_LO

byte7 byte6 byte5 byte4 byte3 byte2 bytel byteO
...the bytes selected are...
Two LSB’s of 10 or 11
00b: byte3 byte2 bytel byteO
01b: byte4 byte3 byte2 bytel
Blackfin DSP Instruction Set Reference 13-7

Video Pixel Operations ”’””"/’@&

13.3.6

13-8

10b: byte5 byte4 byte3 byte2

11b: byte6 byte5 byted byte3

Thisinstruction prevents exceptions that would otherwise be caused by misaligned 32-bit memory
loads issued in paralldl.

Options

The (—, R) syntax reverses the order of the source registers within each register pair. Typical high
performance applications cannot afford the overhead of re-loading both register pair operandsto
maintain byte order for every calculation. Instead, they alternate and load only one register pair
operand each time and alternate between the forward and reverse byte order versions of this
instruction. By default, the low-order bytes come from the low register in the register pair. The (—
, R) option causes the low-order bytes to come from the high register.

In the optional reverse source order case (i.e., using the (—, R) syntax), the only difference is that

the source registers swap places within the register pair in their byte-ordering. Assuming a source
register pair contains the following:

src_reg_pair_LO src_reg_pair_Hl

byte7 byte6 byte5 byte4 byte3 byte2 bytel byteO

...the bytes selected are...

Two LSB’'s of 10 or 11

00b: byte3 byte2 bytel byteO
01b: byted byte3 byte2 bytel
10b: byte5 byted byte3 byte2
11b: byte6 byte5 byte4 byte3

Blackfin DSP Instruction Set Reference

Bma/(/?@

13.3.7
13.3.8

13.3.9

13.3.10

13.3.11

13.3.12

Video Pixel Operations

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of thisinstruction can beissued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

Example
r3 = byteop3p (r1:0, r3:2) (lo) ;
r3 = byteop3p (r1:0, r3:2) (hi) ;

r3 = byteop3p (r1:0, r3:2) (lo, 1) ;
r3 = byteop3p (r1:0, r3:2) (hi, r) ;

Also See

Quad 8-Bit Add

Special Applications

Thisinstruction is primarily intended for video motion compensation algorithms. It supports the
addition of the residual to a video pixel value, followed by unsigned byte saturation.

Blackfin DSP Instruction Set Reference 13-9

Video Pixel Operations ”’””"/’@&

13.4

13.4.1

13.4.2

13.4.3

13.4.4

13.4.5

13.4.6

13.4.7

13.4.8

13.4.9

13-10

Dual 16-Bit Accumulator Extraction with Addition

General Form

dest_reg 1=ALL +ALH, dest_reg 0=A0.L +AOH

Syntax

Dreg=AlL +AlH, Dreg=AO0L + AO.H ; // (b)

Syntax Terminology

Dreg: RO, ..., R7

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Dual 16-Bit Accumulator Extraction with Addition instruction adds together the upper half-
words (bits 31 to 16) and lower half-words (bits 15 to 0) of each Accumulator and loads each result
into a 32-bit destination register.

Each 16-bit half-word in each Accumulator is sign extended before being added together.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of this instruction can beissued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

Example

r4=al.l+al.h, r7=a0.l+a0.h;

Blackfin DSP Instruction Set Reference

Bma/(/?@ Video Pixel Operations

13.4.10 Also See

Quad 8-Bit Subtract-Absolute-Accumul ate

13.4.11 Special Applications

Usethe Dual 16-Bit Accumulator Extraction with Addition instruction for motion estimation
algorithms in conjunction with the Quad 8-Bit Subtract-Absolute-Accumulate instruction.

Blackfin DSP Instruction Set Reference 13-11

Video Pixel Operations ”’””"/’@&

13.5

13.5.1

13.5.2

13.5.3

13.5.4

13.5.5

13-12

Quad 8-Bit Add

General Form
(dest_reg 1,dest reg 0) =BYTEOP16P (src_reg 0, src_reg_1)
(dest_reg 1,dest reg 0) =BYTEOP16P (src_reg 0, src reg 1) (R)

Syntax

/I forward byte order operands
(Dreg, Dreg) = BYTEOP16P (Dreg_pair , Dreg_pair) ; // (b)

/I reverse byte order operands
(Dreg, Dreg) = BYTEOP16P (Dreg_pair , Dreg_pair) (R) ; // (b)

Syntax Terminology

Dreg: RO, ..., R7

Dreg_pair: R1:0, R3:2, only

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Quad 8-Bit Add instruction adds two unsigned quad byte number sets byte-wise, adjusting for
byte-alignment. Load the byte-wise results as 16-hit, zero-extended, half-words in two destination
registers, as shown below.

3l 24 23 16 15 8 T 0
aligned_src_re
gned_sre_ go—_ y3 y2 yl yo0
aligned_src_reg_ 23 72 71 20
1:
Bl 16 A5. 0
dest_reg_O: yl+2z1 y0 + z0
dest_reg_1: y3 +2z3 y2 + 22

The only valid input source register pairs are R1:0 and R3:2.

Blackfin DSP Instruction Set Reference

Bma/(/?@ Video Pixel Operations

The Quad 8-Bit Add instruction provides byte-alignment directly in the source register pairs R1:0
and R3:2 based on index registers 10 and 11.

¢ Thetwo LSB's of the 10 register determine the byte-alignment for source register pair R1:0.
¢ Thetwo LSB'sof the |1 register determine the byte-alignment for source register pair R3:2.

The relationship between the I-register bits and the byte-alignment is illustrated below.

In the default source order case (i.e., not the (R) syntax), assuming that a source register pair
contains the following:

src_reg_pair_HI src_reg_pair_LO

byte7 byte6 byte5 byte4 byte3 byte2 bytel byteO

...the bytes selected are...

Two LSB’s of 10 or 11

00b: byte3 byte2 bytel byteO
01b: byte4 byte3 byte2 bytel
10b: byte5 byte4 byte3 byte2
11b: byte6 byte5 byte4 byte3

Thisinstruction prevents exceptions that would otherwise be caused by misaligned 32-bit memory
loads issued in parallel.

13.5.6 Options

The (R) syntax reverses the order of the source registers within each register pair. Typical high
performance applications cannot afford the overhead of re-loading both register pair operandsto
maintain byte order for every calculation. Instead, they alternate and load only one register pair
operand each time and alternate between the forward and reverse byte order versions of this
instruction. By default, the low-order bytes come from thelow register in theregister pair. The (R)
option causes the low-order bytes to come from the high register.

In the optional reverse source order case (i.e., using the (R) syntax), the only differenceisthat the

source registers swap places within the register pair in their byte-ordering. Assuming that a source
register pair contains the following:

Blackfin DSP Instruction Set Reference 13-13

Video Pixel Operations ”’””"/’@&

src_reg_pair_LO src_reg_pair_Hl

byte7 byte6 byte5 byte4 byte3 byte2 bytel byteO

...the bytes selected are...

Two LSB’'s of 10 or 11

00b: byte3 byte2 bytel byteO
01b: byted byte3 byte2 bytel
10b: byte5 byte4 byte3 byte2
11b: byte6 byte5 byte4 byte3

The mnemonic derives its name from the fact that the operands are bytes, the result is 16-bit, and
the arithmetic operation is“plus’ for addition.

13.5.7 Flags Affected

None

13.5.8 Required Mode

User & Supervisor

13.5.9 Parallel Issue

The 32-bit versions of thisinstruction can be issued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

13.5.10 Example

(r1,r2)= byteop16p (r3:2,r1:0);
(r1,r2)= byteop16p (r3:2,r1:0) (r);

13.5.11 Also See

Quad 8-Bit Subtract

13-14 Blackfin DSP Instruction Set Reference

Bma/(/?@ Video Pixel Operations

13.5.12 Special Applications

Thisinstruction provides packed data arithmetic typical of video and image processing
applications.

Blackfin DSP Instruction Set Reference 13-15

Video Pixel Operations ”’””"/’@&

13.6

13.6.1

13.6.2

13.6.3

13.6.4

13.6.5

13-16

Quad 8-Bit Average — Byte

General Form

dest reg=BYTEOP1P (src reg 0,src reg 1)

dest reg=BYTEOP1P (src_ reg O, src reg 1) (T)
dest reg=BYTEOP1P (src reg 0,src reg 1) (R)
dest reg=BYTEOP1P(src reg O0,src reg 1) (T, R)

Syntax

/ forward byte order operands
Dreg = BY TEOP1P (Dreg_pair,Dreg_pair) ; /I (b)
Dreg = BY TEOP1P (Dreg_pair,Dreg_pair) (T) ; /I truncated (b)

/I reverse byte order operands
Dreg = BY TEOP1P (Dreg_pair,Dreg_pair) (R) ; /I (b)

Dreg = BY TEOP1P (Dreg_pair,Dreg_pair) (T, R) ; /I truncated (b)

Syntax Terminology
Dreg: RO, ..., R7

Dreg_pair: R1.0, R3:2, only

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Quad 8-Bit Average — Byte instruction computes the arithmetic average of two unsigned quad
byte number sets byte-wise, adjusting for byte-alignment. Thisinstruction loads the byte-wise
results as concatenated bytes in one 32-hit destination register, as shown below.

aligned_src_reg_
0

aligned_src_reg_
1

Blackfin DSP Instruction Set Reference

Bma/(/?@ Video Pixel Operations

dest_reg: avg(y3, z3) avg(y2, z2) avg(yl, z1) avg(yo, z0)

Arithmetic average (or mean) is calculated by summing the two operands, then shifting right one
place to divide by two.

The user has two options to bias the result — truncation or rounding up. By default, the architecture
rounds up the mean when the sumis odd. However, the syntax supports optional truncation.

See Section 1.5.6, “Rounding and Truncating,” on page 1-7 for a description of biased rounding
and truncating behavior.

The RND_MOD bit in the ASTAT register has no bearing on the rounding behavior of this
instruction.

The only valid input source register pairs are R1:0 and R3:2.

Thisinstruction provides byte-alignment directly in the source register pairs R1:0 and R3:2 based
onthelOand |1 registers:

¢ Thetwo LSB's of the 10 register determine the byte-alignment for source register pair R1:0.
¢ Thetwo LSB'sof the |1 register determine the byte-alignment for source register pair R3:2.

The relationship between the I-register bits and the byte-alignment is illustrated bel ow.

In the default source order case (i.e., not the (R) syntax), assuming a source register pair contains
the following:

src_reg_pair_HI src_reg_pair_LO

byte7 byte6 byte5 byte4 byte3 byte2 bytel byteO

...the bytes selected are...

Two LSB’s of 10 or 11

00b: byte3 byte2 bytel byteO
01b: byte4 byte3 byte2 bytel
10b: byte5 byte4 byte3 byte2
11b: byte6 byte5 byte4 byte3

Blackfin DSP Instruction Set Reference 13-17

Video Pixel Operations ”’””"/’@&

Thisinstruction prevents exceptions that would otherwise be caused by misaligned 32-bit memory
loads issued in parallel.

13.6.6 Options

The Quad 8-Bit Average — Byte instruction supports the following options:

Table 13-1. Options for Quad 8-Bit Average — Byte

Option Description
Default Round up the arithmetic mean.
(T Truncates the arithmetic mean.

Reverses the order of the source registers within each register pair. Typical high
performance applications cannot afford the overhead of re-loading both register pair
operands to maintain byte order for every calculation. Instead, they alternate and
(R) load only one register pair operand each time and alternate between the forward
and reverse byte order versions of this instruction. By default, the low-order bytes
come from the low register in the register pair. The (R) option causes the low-order
bytes to come from the high register.

(T, R) Combines both of the above options.

In the optional reverse source order case (i.e., using the (R) syntax), the only difference isthat the
source registers swap places within the register pair in their byte-ordering. Assuming that a source
register pair contains the following:

src_reg_pair_LO src_reg_pair_Hl

byte7 byte6 byte5 byte4 byte3 byte2 bytel byteO

...the bytes selected are...

Two LSB’'s of 10 or 11

00b: byte3 byte2 bytel byteO
01b: byte4 byte3 byte2 bytel
10b: byte5 byted byte3 byte2
11b: byte6 byte5 byted byte3

The mnemonic derives its name from the fact that the operands are bytes, the result is one word,
and the basic arithmetic operation is“plus’ for addition. The single destination register indicates
that averaging is performed.

13-18 Blackfin DSP Instruction Set Reference

Bma/(/?@ Video Pixel Operations

13.6.7 Flags Affected

None

13.6.8 Required Mode

User & Supervisor

13.6.9 Parallel Issue

The 32-bit versions of thisinstruction can beissued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

13.6.10 Example
r3 = byteoplp (r1:0, r3:2) ;
r3 = byteoplp (r1:0, r3:2) (r) ;

r3 = byteoplp (r1:0, r3:2) (1) ;
r3 = byteoplp (r1:0, r3:2) (t,r) ;

13.6.11 Also See

Quad 8-Bit Add

13.6.12 Special Applications

This instruction supports binary interpolation used in fractional motion search and motion
compenstion algorithms.

Blackfin DSP Instruction Set Reference 13-19

Video Pixel Operations ”’””"/’@&

13.7

13.7.1

13.7.2

13.7.3

13.7.4

13.7.5

13-20

Quad 8-Bit Average — Half-Word

General Form

dest reg=BYTEOP2P (src_reg 0, src reg 1) (RNDL)
dest reg=BYTEOP2P (src_reg 0O, src_reg 1) (RNDH)
dest reg=BYTEOP2P (src reg 0,src reg 1) (TL)

dest reg=BYTEOP2P (src_reg O, src reg 1) (TH)

dest reg=BYTEOP2P (src_reg 0, src reg 1) (RNDL, R)
dest reg=BYTEOP2P (src_reg 0, src reg 1) (RNDH, R)
dest reg=BYTEOP2P (src reg 0,src reg 1) (TL, R)
dest reg=BYTEOP2P (src reg 0,src reg 1) (TH, R)

Syntax

[forward byte order operands
Dreg = BY TEOP2P (Dreg_pair,Dreg_pair) (RNDL) ; // round into low bytes (b)
Dreg = BY TEOP2P (Dreg_pair,Dreg_pair) (RNDH) ; // round into high bytes (b)
Dreg = BY TEOP2P (Dreg_pair,Dreg_pair) (TL) ; /I truncate into low bytes (b)
Dreg = BY TEOP2P (Dreg_pair,Dreg_pair) (TH) ; /I truncate into high bytes (b)

/I reverse byte order operands
Dreg = BY TEOP2P (Dreg_pair,Dreg_pair) (RNDL, R) ; // round into low bytes (b)
Dreg = BY TEOP2P (Dreg_pair,Dreg_pair) (RNDH, R) ; // round into high bytes (b)
Dreg = BY TEOP2P (Dreg_pair,Dreg_pair) (TL, R) ; /I truncate into low bytes (b)
Dreg = BY TEOP2P (Dreg_pair,Dreg_pair) (TH, R) ; /I truncate into high bytes (b)

Syntax Terminology

Dreg: RO, ..., R7

Dreg_pair: R1:0, R3:2, only

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Quad 8-Bit Average — Half-Word instruction finds the arithmetic average of two unsigned quad
byte number sets byte-wise, adjusting for byte-alignment. Thisinstruction averages four bytes
together. The instruction loads the results as bytes on half-word boundaries in one 32-bit
destination register. Some syntax options load the upper byte in the half-word and others load the
lower byte, as shown below.

Blackfin DSP Instruction Set Reference

Video Pixel Operations

Assuming the source registers contain...

1< S 24 23, 16 15..iiiiinn. 8 T 0
aligned_src_re
gned_src_ go—_ y3 y2 yl yo0
aligned_src_reg_ 23 72 71 20
1:

...the versions that load the result into the lower byte— RNDL and TL — produce...

avg(y3,y2, z3,
z2)

avg(yl, yo, z1,

dest_reg: O...... 0 20)

...and the versions that load the result into the higher byte— RNDH and TH — produce...

avg(y3,y2, z3,
z2)

avg(yl, yo, z1,

dest_reg: 20)

In either case, the unused bytes in the destination register filled with 0x00.

Arithmetic average (or mean) is calculated by summing the four byte operands, then shifting right
two places to divide by four.

When the intermediate sum is not evenly divisible by 4, precision may be lost.
The user has two options to bias the result — truncation or biased rounding.

See Section 1.5.6, “Rounding and Truncating,” on page 1-7 for a description of unbiased rounding
and truncating behavior.

The RND_MOD bit in the ASTAT register has no bearing on the rounding behavior of this
instruction.

The only valid input source register pairs are R1:0 and R3:2.

The Quad 8-Bit Average — Half-Word instruction provides byte-alignment directly in the source
register pairs R1:0 and R3:2 based only on the |10 register. The byte-alignment in both source
registers must be identical since only one register specifies the byte-alignment for them both.

The relationship between the I-register bits and the byte-alignment isillustrated next.

Blackfin DSP Instruction Set Reference 13-21

Video Pixel Operations

Blﬂl.’l(/r@&

In the default source order case (i.e., not the (R) syntax), assuming a source register pair contains

the following:

src_reg_pair_Hl src_reg_pair_LO
byte7 byte6 byte5 byte4 byte3 byte2 bytel byteO
...the bytes selected are...
Two LSB’s of 10
00b: byte3 byte2 bytel byteO
01b: byte4 byte3 byte2 bytel
10b: byte5 byted byte3 byte2
11b: byte6 byte5 byte4 byte3

Thisinstruction prevents exceptions that would otherwise be caused by misaligned 32-bit memory

loads issued in parallel.

13.7.6 Options

The Quad 8-Bit Average — Half-Word instruction supports the following options:

Table 13-2. Options for Quad 8-Bit Average — Half-Word

Option Description

(RND—) Rounds up the arithmetic mean.
(T—) Truncates the arithmetic mean.
(—L) Loads the results into the lower byte of each destination half-word.
(—H) Loads the results into the higher byte of each destination half-word.

Reverses the order of the source registers within each register pair. Typical high
performance applications cannot afford the overhead of re-loading both register pair
operands to maintain byte order for every calculation. Instead, they alternate and load
(,R) only one register pair operand each time and alternate between the forward and reverse
byte order versions of this instruction. By default, the low-order bytes come from the low
register in the register pair. The (R) option causes the low-order bytes to come from the
high register.

When used together, the order of the options in the syntax makes no difference.

13-22 Blackfin DSP Instruction Set Reference

Bma/(/?@

Video Pixel Operations

In the optional reverse source order case (i.e., using the (R) syntax), the only differenceisthat the
source registers swap places within the register pair in their byte-ordering. Assuming a source

register pair contains the following:

src_reg_pair_LO

src_reg_pair_HI

byte7 byte6 byte5 byte4 byte3 byte2 bytel byteO
...the bytes selected are...
Two LSB's of 10
00b: byte3 byte2 bytel byteO
01b: byte4 byte3 byte2 bytel
10b: byte5 byte4 byte3 byte2
11b: byte6 byte5 byte4 byte3

The mnemonic derives its name from the fact that the operands are bytes, the result is two half-
words, and the basic arithmetic operationis“plus’ for addition. The single destination register

indicates that averaging is performed.

13.7.7 Flags Affected

None

13.7.8 Required Mode

User & Supervisor

13.7.9 Parallel Issue

The 32-bit versions of thisinstruction can beissued in parallel with specific other 16-hit
instructions. For details, see Chapter 15, “Issuing Parallél Instructions.”

13.7.10 Example

r3 = byteop2p (r1:0, r3:2) (rndl) ;
r3 = byteop2p (r1:0, r3:2) (rndh) ;
r3 = byteop2p (r1:0, r3:2) (tl) ;
r3 = byteop2p (r1:0, r3:2) (th) ;

Blackfin DSP Instruction Set Reference

13-23

Video Pixel Operations

13.7.11

13.7.12

13-24

r3 = byteop2p (r1:0, r3:2) (rndl, r) ;
r3 = byteop2p (r1:0, r3:2) (rndh, r) ;

r3 = byteop2p (r1:0, r3:2) (tl, r) ;
r3 = byteop2p (r1:0, r3:2) (th, r) ;

Also See

Quad 8-Bit Average — Byte

Special Applications

Blﬂl.’l(/r@&

This instruction supports binary interpolation used in fractional motion search and motion

compenstion algorithms.

Blackfin DSP Instruction Set Reference

Bma/(/?@

13.8

13.8.1
13.8.2
13.8.3
13.8.4

13.8.5

13.8.6

13.8.7

Video Pixel Operations

Quad 8-Bit Pack

General Form

dest reg=BYTEPACK (src reg O,src reg 1)

Syntax

Dreg = BYTEPACK (Dreg, Dreg) ; I (b)

Syntax Terminology

Dreg: RO, ..., R7

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Quad 8-Bit Pack instruction packs four 8-bit values, half-word aligned, contained in two
source registers into one register, byte aligned.

3l 24 23 16 15, 8 T 0
src_reg_0: bytel byteO
src_reg_1: byte3 byte2

dest_reg: byte3 byte2 bytel byte0

Thisinstruction prevents exceptions that would otherwise be caused by misaligned 32-bit memory
loads issued in parallel.

Flags Affected

None

Required Mode

User & Supervisor

Blackfin DSP Instruction Set Reference 13-25

Video Pixel Operations

13.8.8

13.8.9

13.8.10

13.8.11

13-26

Parallel Issue

Blﬂl.’l(/r@&

The 32-bit versions of thisinstruction can beissued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

Example
r2 = bytepack (r4,r5);

Assuming...
R4 = OXFEED FACE
R5 = OxBEEF BADD

then this instruction returns...
R2 = OXEFDD EDCE

Also See

Quad 8-Bit Unpack

Special Applications

Blackfin DSP Instruction Set Reference

Bma/(/?@

13.9

13.9.1

13.9.2

13.9.3

13.9.4

13.9.5

Video Pixel Operations

Quad 8-Bit Subtract

General Form
(dest_reg 1, dest reg 0) =BYTEOP16M (src_reg O, src_reg 1)
(dest_reg 1, dest reg 0) =BYTEOP16M (src reg 0, src reg 1) (R)

Syntax

/l forward byte order operands
(Dreg, Dreg) = BYTEOP16M (Dreg_pair , Dreg_pair) ; // (b)

/I reverse byte order operands
(Dreg, Dreg) = BY TEOP16M (Dreg-pair, Dreg-pair) (R) ; // (b)

Syntax Terminology

Dreg: RO, ..., R7

Dreg_pair: R1:0, R3:2, only

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Quad 8-Bit Subtract instruction subtracts two unsigned quad byte number sets byte-wise,
adjusting for byte-alignment. The instruction loads the byte-wise results as sign-extended half-
words in two destination registers, as shown below.

3l 24 23 16 15, 8 T 0
aligned_src_re
gned_sre_ go—_ y3 y2 yl yo
aligned_src_reg_ 23 72 71 20
1:
Bl 16 A5.ii 0
dest_reg_O: yl-z1 y0 - z0
dest_reg_1: y3-23 y2 - 22

Blackfin DSP Instruction Set Reference 13-27

Video Pixel Operations ”’””"/’@&

13.9.6

13-28

The only valid input source register pairs are R1:0 and R3:2.

The Quad 8-Bit Subtract instruction provides byte-alignment directly in the source register pairs
R1:0 and R3:2 based on index registers 10 and 11.

* Thetwo LSB's of the 10 register determine the byte-alignment for source register pair R1:0.
* Thetwo LSB'sof the |1 register determine the byte-alignment for source register pair R3:2.

The relationship between the |-register bits and the byte-alignment is illustrated bel ow.

In the default source order case (i.e., not the (R) syntax), assuming that a source register pair
contains the following:

src_reg_pair_Hl src_reg_pair_LO

byte7 byte6 byte5 byte4 byte3 byte2 bytel byteO

...the bytes selected are...

Two LSB’'s of 10 or 11

00b: byte3 byte2 bytel byteO
01b: byte4 byte3 byte2 bytel
10b: byte5 byted byte3 byte2
11b: byte6 byte5 byte4 byte3

Thisinstruction prevents exceptions that would otherwise be caused by misaligned 32-bit memory
loads issued in parallel.

Options

The (R) syntax reverses the order of the source registers within each register pair. Typical high
performance applications cannot afford the overhead of re-loading both register pair operandsto
maintain byte order for every calculation. Instead, they alternate and load only one register pair
operand each time and alternate between the forward and reverse byte order versions of this
instruction. By default, the low-order bytes come from the low register in theregister pair. The (R)
option causes the low-order bytes to come from the high register.

In the optional reverse source order case (i.e., using the (R) syntax), the only difference isthat the

source registers swap places within the register pair in their byte-ordering. Assuming that a source
register pair contains the following:

Blackfin DSP Instruction Set Reference

Bma/(/?@

src_reg_pair_LO

Video Pixel Operations

src_reg_pair_HI

byte7 byte6 byte5 byte4 byte3 byte2 bytel byteO
...the bytes selected are...
Two LSB's of 10 or 11
00b: byte3 byte2 bytel byteO
01b: byte4 byte3 byte2 bytel
10b: byte5 byte4 byte3 byte2
11b: byte6 byte5 byte4 byte3

The mnemonic derives its name from the fact that the operands are bytes, the result is 16-bit, and
the arithmetic operation is“minus’ for subtraction.

13.9.7 Flags Affected

None

13.9.8 Required Mode

User & Supervisor

13.9.9 Parallel Issue

The 32-bit versions of thisinstruction can beissued in parallel with specific other 16-hit
instructions. For details, see Chapter 15, “Issuing Parallél Instructions.”

13.9.10 Example

(r1,r2)= byteopl6m (r3:2,r1:0);
(r1,r2)= byteopl6m (r3:2,r1:0) (r);

13.9.11 Also See

Quad 8-Bit Add

Blackfin DSP Instruction Set Reference

13-29

Video Pixel Operations ”’””"/’@&

13.9.12 Special Applications

This instruction provides packed data arithmetic typical of video and image processing
applications.

13-30 Blackfin DSP Instruction Set Reference

Bma/(/?@

13.10

13.10.1

13.10.2

13.10.3
13.10.4

13.10.5

Video Pixel Operations

Quad 8-Bit Subtract-Absolute-Accumulate

General Form
SAA (src_reg 0, src reg 1)
SAA (src_reg 0, src reg 1) (R)

Syntax
SAA (Dreg_pair , Dreg_pair) ; I forward byte order operands (b)
SAA (Dreg_pair , Dreg_pair) (R) ; /I reverse byte order operands (b)

Syntax Terminology

Dreg_pair: R1:0, R3:2 (Thisinstruction only supports register pairs R1:0 and R3:2.)

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Quad 8-Bit Subtract-Absolute-Accumulate instruction subtracts four pairs of values, takes the
absolute value of each difference, and accumulates each result into a 16-bit Accumulator half. The
results are placed in the upper- and lower-half Accumulators AO.H, AO.L, A1H,and Al.L.

No saturation is performed by this operation.

Only register pairs R1:0 and R3:2 are valid sources for thisinstruction.

This instruction supports the following byte-wise sum of absolute difference (SAD) calculations:

N_l N 1
SAD jadi, 1) b(l,J)|

i0jo

Typical valuesfor N are 8 and 16, corresponding to the video block size of 8x8 and 16x16 pixels,
respectively. The 16-bit Accumulator registers limit the pixel region or block size to 32x32 pixels.

The SAA instruction behavior is shown below.

src_reg_0 | a(i, j+3) a(i, j+2) a(i, j+1) a(, j)

src_reg 1 | b, j+3) b(i, j+2) b(i, j+1) b, j)

Blackfin DSP Instruction Set Reference 13-31

Video Pixel Operations ”’””"/’@&

13.10.6

13-32

+=1a6#3) | | e+ | aon | e | oL | +Elal -

ALH T pii j+3) | Lol Cbi+2) | : - b(i, j+1) | : b(i,j) |

The only valid input source register pairs are R1:0 and R3:2. Thisinstruction provides byte-
alignment directly in the source register pairs R1:0 and R3:2 based on the 10 and 11 registers:

* Thetwo LSB’s of the 10 register determine the byte-alignment for source register pair
src_reg O.

* Thetwo LSB’sof the |1 register determine the byte-alignment for source register pair
src reg 1.

The relationship between the |-register bits and the byte-alignment is illustrated bel ow.

In the default source order case (i.e., not the (R) syntax), assuming a source register pair contain:

src_reg_pair_HI src_reg_pair_LO

byte7 byte6 byte5 byted byte3 byte2 bytel byte0

...the bytes selected are...

Two LSB’'s of 10 or 11

00b: byte3 byte2 bytel byte0
01b: byte4 byte3 byte2 bytel
10b: byte5 byte4 byte3 byte2
11b: byte6 byte5 byted byte3

Thisinstruction prevents exceptions that would otherwise be caused by misaligned 32-bit memory
loads issued in paralldl.

Options

The (R) syntax reverses the order of the source registers within each pair. Typical high
performance applications cannot afford the overhead of re-loading both register pair operandsto
maintain byte order for every calculation. Instead, they alternate and load only one register pair
operand each time and alternate between the forward and reverse byte order versions of this
instruction. By default, the low-order bytes come from the low register in the register pair. The (R)
option causes the low-order bytes to come from the high register.

When reversing source order by using the (R) syntax, the source registers swap places within the
register pair in their byte-ordering. If a source register pair contains the following

Blackfin DSP Instruction Set Reference

Bma/(/?@ Video Pixel Operations

src_reg_pair_LO src_reg_pair_HI

byte7 byte6 byte5 byte4 byte3 byte2 bytel byteO

...the bytes selected are...

Two LSB’s of 10 or 11

00b: byte3 byte2 bytel byteO
01b: byte4 byte3 byte2 bytel
10b: byte5 byte4 byte3 byte2
11b: byte6 byte5 byte4 byte3

The SAA instruction computes 12 pixel operations simultaneously — the 3-operation subtract-
absolute-accumulate on 4 pairs of operand bytesin parallel.

13.10.7 Flags Affected

None

13.10.8 Required Mode

User & Supervisor

13.10.9 Parallel Issue

The 32-bit versions of thisinstruction can beissued in parallel with specific other 16-hit
instructions. For details, see Chapter 15, “Issuing Parallél Instructions.”

13.10.10 Example

saa(rl:0,r3:2) || rO=[i0++] || r2 =[i1++] ; [paraldl fill instructions
saa(rl:0,r3:2) (R) |[rl = [i0++] [[r3=[i1++] ; I reverse, parallél fill instructions
saa(rl:0,r3:2) ; /l'last SAA inaloop, no morefill required

13.10.11 Also See

Disable Alignment Exception for Load, L oad Data Register

Blackfin DSP Instruction Set Reference 13-33

Video Pixel Operations ”’””"/’@&

13.10.12 Special Applications
Use the Quad 8-Bit Subtract-Absolute-Accumulate instruction for block-based video motion

estimation algorithms using block sum of absolute difference (SAD) cal culations to measure
distortion.

13-34 Blackfin DSP Instruction Set Reference

Bma/(/?@ Video Pixel Operations

13.11 Quad 8-Bit Unpack

13.11.1 General Form
(dest_reg 1, dest reg 0) = BYTEUNPACK src_reg_pair
(dest_reg 1, dest reg 0) = BYTEUNPACK src_reg_pair (R)
13.11.2 Syntax
(Dreg, Dreg) = BYTEUNPACK Dreg_pair; // (b)
(Dreg, Dreg) = BY TEUNPACK Dreg_pair (R) ; // reverse source order (b)
13.11.3 Syntax Terminology
Dreg: RO, ..., R7
Dreg_pair: R1.0, R3:2, only
13.11.4 Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

13.11.5 Functional Description

The Quad 8-Bit Unpack instruction copies four contiguous bytes from a pair of source registers,
adjusting for byte-alignment. The instruction loads the selected bytes into two arbitrary data
registers on half-word alignment.

Thetwo LSB’s of the 10 register determine the source byte-alignment, asillustrated below.

In the default source order case (i.e., not the (R) syntax), assuming that the source register pair
contains the following:

src_reg_pair_HI src_reg_pair_LO

byte7 byte6 byte5 byte4 byte3 byte2 bytel byteO

...the bytes selected are...

Two LSB's of 10

00b: byte3 byte2 bytel byteO

01b: byte4 byte3 byte2 bytel

Blackfin DSP Instruction Set Reference 13-35

Video Pixel Operations ”’””"/’@&

13.11.6

13-36

10b: byte5 byte4 byte3 byte2

11b: byte6 byte5 byted byte3

Thisinstruction prevents exceptions that would otherwise be caused by misaligned 32-bit memory
loads issued in parallel.

Options

The (R) syntax reversesthe order of the source registers within the pair. Typical high performance
applications cannot afford the overhead of re-loading both register pair operands to maintain byte
order for every calculation. Instead, they alternate and load only one register pair operand each
time and alternate between the forward and reverse byte order versions of thisinstruction. By
default, the low-order bytes come from the low register in the register pair. The (R) option causes
the low-order bytes to come from the high register.

In the optional reverse source order case (i.e., using the (R) syntax), the only difference isthat the
source registers swap placesin their byte-ordering. Assuming the source register pair contains the
following:

src_reg_pair_LO src_reg_pair_Hl

byte7 byte6 byte5 byte4 byte3 byte2 bytel byteO

...the bytes selected are...

Two LSB’'s of 10 or 11

00b: byte3 byte2 bytel byteO
01b: byted byte3 byte2 bytel
10b: byte5 byted byte3 byte2
11b: byte6 byte5 byte4 byte3

The four bytes, now byte aligned, are copied into the destination registers on half-word alignment,
as shown below.

Blackfin DSP Instruction Set Reference

Bma/(/?@

13.11.7
13.11.8

13.11.9

13.11.10

Blackfin DSP Instruction Set Reference

Video Pixel Operations

3l 24 23 16 15, 8 T 0
Aligned bytes: byte_D byte_C byte_B byte_A
3l 24 23 16 15, 8 T 0
dest_reg_O: byte B byte A
dest_reg_1: byte D byte C

Only register pairs R1:0 and R3:2 are valid sources for thisinstruction.

Misaligned access exceptions are disabled during this instruction.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of thisinstruction can beissued in parallel with specific other 16-hit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

Example

(r6,r5) = byteunpack r1:0 ; /I non-reversing sources

Assuming...
register I0’stwo LSB’s = 00b,
R1 = OxFEED FACE
RO = OxBEEF BADD

then this instruction returns...
R6 = OxO0BE 00EF
R5 = 0x00BA 00DD

Assuming...
register I0'stwo LSB’s = 01b,
R1 = OxFEED FACE
RO = OxBEEF BADD

then this instruction returns...

13-37

Video Pixel Operations

13-38

R6 = OxOOCE 00BE
R5 = OxOOEF 00BA

Assuming...
register |0'stwo LSB’s = 10b,
R1 = OXFEED FACE
RO = OxBEEF BADD

then thisinstruction returns...
R6 = 0x00FA 00CE
R5 = 0xO00BE O0OEF

Assuming...
register I0'stwo LSB’s = 11b,
R1 = OXFEED FACE
RO = OXBEEF BADD

then thisinstruction returns...
R6 = 0xO0ED 00FA
R5 = 0xO0CE 00BE

(r6,r5) = byteunpack r1:0 (R) ;

Assuming...
register 10'stwo LSB’s = 00b,
R1 = OXFEED FACE
RO = OXBEEF BADD

then this instruction returns...
R6 = 0x00FE 00ED
R5 = 0x00FA 00CE

Assuming...
register 10'stwo LSB’s = 01b,
R1 = OXFEED FACE
RO = OXBEEF BADD

then this instruction returns...
R6 = 0x00DD 00FE
R5 = 0x00ED 00FA

Assuming...
register 10'stwo LSB’s = 10b,
R1 = OXFEED FACE
RO = OXBEEF BADD

then this instruction returns...
R6 = 0x00BA 00DD
R5 = Ox00FE 00ED

Assuming...
register I0'stwo LSB’s = 11b,

/I reversing sources case

Blﬂl.’l(/r@&

Blackfin DSP Instruction Set Reference

Bma/(/?@ Video Pixel Operations

R1 = OXFEED FACE
RO = OXBEEF BADD

then this instruction returns...
R6 = OxO0EF 00BA
R5 = 0x00DD 00FE

13.11.11 Also See

Quad 8-hit Pack

13.11.12 Special Applications

Blackfin DSP Instruction Set Reference 13-39

Video Pixel Operations ”’””"/’@&

13-40 Blackfin DSP Instruction Set Reference

VECTOR OPERATIONS

14

Instruction Summary

This chapter discusses the instructions that control vector operations. Users can take advantage of
these instructions to perform simultaneous operations on multiple 16-bit values, including add,
subtract, multiply, shift, negate, pack and search. Compare-Select and Add-On-Sign are also
included in this section.

14.1
14.2
14.3
14.4
145
14.6
14.7
14.8
14.9
14.10
14.11
14.12
14.13

A ON SIGN e e e 14-2
Compare-Select (VIT_MAX) oo s 14-5
Vector ADSOIULE VEIUEoovcuiiiiiieiceneee e 14-10
VeCtor Add / SUDEFECLcvevveiirieiecieese e 14-12
Vector Arithmetic Shift ... 14-16
Vector Logical Shiftcoooiieie e 14-19
VECLOr MAXIMUM ..ttt et 14-22
VECtOr MINIMUIM L. e 14-24
VECLOr MUIIPIY eeeeeieseeece et s 14-26
Vector Multiply and Multiply-Accumulateccceeeveeeeevnencenesesenens 14-28
Vector Negate (Two's COMPIEMENL)covveiriereresere e eeeens 14-32
VECLON PACK ...t 14-34
VECLON SEAICH ...t 14-36

Blackfin DSP Instruction Set Reference

14-1

Vector Operations ”’””"/’@&

14.1

14.1.1

14.1.2

14.1.3

14.1.4

14.1.5

14-2

Add on Sign

General Form

dest_hi =dest lo=SIGN (srcO_hi) * srcl_hi + SIGN (srcO_lo) * srcl lo

Syntax
Dreg_hi =Dreg_lo=SIGN (Dreg_hi) * Dreg_hi + SIGN (Dreg_lo) * Dreg_lo; // (b)
REGISTER CONSISTANCY

The destination registers dest_hi and dest_lo must be halves of the same data register. Similarly,
src0_hi and srcO_lo must be halves of the same register and src1_hi and src1_|o must be halves of
the same register.

Syntax Terminology

Dreg_hi: ROH, ..., R7.H
Dreg_lo: RO.L, ..., R7.L

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Add on Sign instruction performs a two-step function, as follows:

1. Multiply the arithmetic sign of a 16-bit half-word number in srcO by the corresponding half-
word number in srcl. Thearithmetic sign of src0 is either (+1) or (—1), depending on the sign
bit of src0. The instruction performs this operation on the upper and lower half-words of the
same data registers.

The results of this step obey the signed multiplication rules summarized below. Y isthe
number in srcO, and Z is the number in srcl. The numbersin srcO and srcl may be positive or
negative.

SRCO SRC1 Sign-Adjusted SRC1
+Y +Z +Z
+Y -Z -Z
=Y +Z -Z
-Y -Z +Z

Note that the result always bears the magnitude of Z with only the sign affected.

Blackfin DSP Instruction Set Reference

Bma/(/?@

14.1.6
14.1.7

14.1.8

14.1.9

Vector Operations

2. Then, add the sign-adjusted src1 upper and lower half-word results together and store the same
16-bit sum in the upper and lower halves of the destination register, as shown in the
illustration, below.

Assuming the source registers contain...

i IS 24 23, 16 15..ciiieeeneen. 8 7 e 0
srcO: al a0
srcl: bl b0

...the destination register contains...

(sign_adjusted_b1) + (sign_adjusted_b1) +

dest: | (sign_adjusted_bo) (sign_adjusted_bo)

The sum is not saturated if the addition exceeds 16 bits.

Flags Affected

None.

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of thisinstruction can beissued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

Example

r7.h=r7.l=sign(r2.h)*r3.h+sign(r2.1)*r3. ;
IF

R2H=2
R3.H=23
R2.L = 2001
R3.L =1234

...then...

R7.H = 1257 (or 1234 + 23)
R7.L = 1257

Blackfin DSP Instruction Set Reference 14-3

Vector Operations

R2H=-2
R3.H=23
R2.L = 2001
R3.L =1234

...then..

R7.H = 1211 (or 1234 — 23)
R7.L = 1211

R2H=2
R3.H =23
R2.L =-2001
R3.L =1234

...then..

R7.H = —1211 (or (-1234) + 23)
R7.L =-1211

R2H=-2
R3.H =23
R2.L =-2001
R3.L = 1234

...then..

R7.H = —1257 (or (~1234) — 23)
R7.L =-1257

14.1.10 Also See

14.1.11 Special Applications

Blﬂl.’l(/r@&

Use the Sum on Sign instruction to compute the branch metric used by each Viterbi Butterfly.

14-4

Blackfin DSP Instruction Set Reference

Bma/(/?@

14.2

14.2.1

14.2.2

14.2.3

14.2.4

14.2.5

Vector Operations

Compare-Select (VIT_MAX)

General Form

dest reg=VIT_MAX (src_reg O,src_reg 1) (ASL)
dest reg=VIT_MAX (src_reg O, src_reg 1) (ASR)
dest reg lo=VIT_MAX (src_reg) (ASL)
dest reg lo=VIT_MAX (src_reg) (ASR)

Syntax

DUAL 16-BIT OPERATION

Dreg=VIT_MAX (Dreg, Dreg) (ASL) ; /1 shift history bits left (b)
Dreg=VIT_MAX (Dreg, Dreg) (ASR) ; /I shift history bits right (b)

SINGLE 16-BIT OPERATION

Dreg_lo=VIT_MAX (Dreg) (ASL) ; /1 shift history bits Ieft (b)
Dreg_lo=VIT_MAX (Dreg) (ASR) ; /1 shift history bitsright (b)

Syntax Terminology

Dreg: RO, ..., R7
Dreg_lo: RO.L, ..., R7.L

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Compare-Select (VIT_MAX) instruction sel ects the maximum values of pairs of 16-bit
operands, returns the largest values to the destination register, and serially recordsin A0.W the
source of the maximum. This operation performs signed operations. The operands are compared as
two's complements.

Versions are available for dual and single 16-bit operations. Whereas the dua versions compare
four operands to return two maxima, the single versions compare only two operands to return one
maximum.

The Accumulator extension bits (bits 39:32) must be cleared before executing this instruction.

This operation isillustrated, bel ow.

Blackfin DSP Instruction Set Reference 14-5

Vector Operations ”’””"/’@&

DUAL 16-BIT OPERAND BEHAVIOR

If the source registers contain the following:

CH TR 2423, 16 15..iiiiiinn, 87 i 0
src_reg_0 yl y0
src_reg_1 z1 z0

...the destination register will contain...

dest_reg Maximum, y1 or yO Maximum, z1 or z0

The ASL version shifts AO left two bit positions and appends two L SB’s to indicate the source of
each maximum.

A0.X AO.W

A0 | 00000000 XXXXXXXXXXXXXXXXXKXXXXKXXXXXXXXBB

WHERE

BB Indicates

00 z0 and y0 are maxima

01 z0 and y1 are maxima

10 z1 and y0 are maxima

11 z1 and y1 are maxima

Conversely, the ASR version shifts AQ right two bit positions and appends two MSB’s to indicate
the source of each maximum.

A0.X AO.W

A0 | 00000000 B B XXX XXXXXXX XX XXX XX XX KX XX XKXXXXXX

14-6 Blackfin DSP Instruction Set Reference

Bma/(/?@ Vector Operations

WHERE

BB Indicates

00 y0 and z0 are maxima

01 y0 and z1 are maxima

10 y1 and z0 are maxima

11 yl and z1 are maxima

Notice that the history bit code depends on the A0 shift direction. The bit for src_reg_1 isaways
shifted onto AO first, followed by the bit for src_reg 0.

The single operand versions behave similarly.

DUAL 16-BIT OPERAND BEHAVIOR

If the dual source register contains the following:

src_reg ! y0

...the dual destination register will contain...

dest_reg_lo Maximum, y1 or yO

The ASL version shifts AO left one bit position and appends an L SB to indicate the source of the
maximum.

A0.X AO.W

A0 | 00000000 XXXXXXXXXXXXXXXXXXXXXXKXXXXXXXXXB

Conversely, the ASR version shifts AO right one bit position and appends an MSB to indicate the
source of the maximum.

A0.X AO.W

A0 00000000 [22,0,9.9,0,9,0,0.9.9,9,0,9,0.9.9,9,9,9,0,0.9,9,0,0,0,0.9,.9,0,0,

Blackfin DSP Instruction Set Reference 14-7

Vector Operations ”’””"/’@&

14.2.6

14.2.7

14.2.8

14.2.9

14-8

WHERE
B Indicates
0 yO0 is the maximum
1 y1 is the maximum

The path metrics are allowed to overflow, and maximum comparison is done on the 2's complement
circle. Such comparison gives a better indication of the relative magnitude of two large numbers
when asmall number is added/subtracted to both.

Flags Affected

None.

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of this instruction can beissued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

Example

r5 =vit_max(r3, r2)(ad) ; /I shift left, dual operation

AsSSume:

R3 = OxFFFF 0000
R2 = 0x0000 FFFF
A0 = 0x00 0000 0000

This example produces...

R5 = 0x0000 0000
A0 = 0x00 0000 0002

r7 =vit_max (rl, r0) (asr) ; /I shift right, dual operation

ASSUme:

R1 = OXFEED BEEF
RO = OXDEAF 0000
A0 = 0x00 0000 0000

This example produces...

Blackfin DSP Instruction Set Reference

Bma/(/?@ Vector Operations

R7 = OXFEED 0000
A0 = 0x00 8000 0000

r3. = vit_max (rl)(ad) ; /1 shift |eft, single operation

Assume:

R1 = OxFFFF 0000
A0 = 0x00 0000 0000

This example produces...

R3.L = 0x0000
A0 = 0x00 0000 0000

r3.l = vit_max (rl)(asr) ; /I shift right, single operation

Assume:

R1 = 0x1234 FADE
A0 = 0x00 FFFF FFFF

This example produces...

R3.L = 0x1234
A0 = 0x00 7FFF FFFF

14.2.10 Also See

Maximum (under “Arithmetic Operations”)

14.2.11 Special Applications

The Compare-Select (VIT_MAX) instruction is a key element of the Add-Compare-Select (ACS)
function for Viterbi decoders. Combine it with a Vector Add instruction to calculate atrellis
butterfly used in ACS functions.

Blackfin DSP Instruction Set Reference 14-9

Vector Operations ”’””"/’@&

14.3 Vector Absolute Value

14.3.1 General Form

dest_reg = ABSsource _reg (V)

14.3.2 Syntax

Dreg = ABSDreg (V) ; 1l (b)

14.3.3 Syntax Terminology

Dreg: RO, ..., R7

14.3.4 Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

14.3.5 Functional Description

The Vector Absolute Value instruction calculates the individual absolute values of the upper and
lower halves of a single 32-bit data register. The results are placed into a 32-bit dest_reg, using the
following rules:

¢ |f theinput value is positive or zero, copy it unmodified to the destination.
¢ |f theinput value is negative, subtract it from zero and store the result in the destination.

For example, if the source register contains this:

Src_reg: x.h X.|

...the destination register contains this:

dest_reg: | x.h| | x.I|

Thisinstruction saturates the result.

14-10 Blackfin DSP Instruction Set Reference

Bma/(/?@

14.3.6

14.3.7

14.3.8

14.3.9

14.3.10

14.3.11

Vector Operations

Flags Affected

Thisinstruction affects flags as follows:
* AZissetif either or both result is zero; cleared if both are non-zero.
* AN iscleared.
* Vissetif either or both result saturates; cleared if both are no saturation.
* VSissetif V isset; unaffected otherwise.

All other flags are unaffected.

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of thisinstruction can beissued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallél Instructions.”

Example
/1 1 r1 = OXFFFF 7FFF, then . . .

r3=absrl (v);
/... produces 0x0001 7FFF

Also See

Absolute Value (in “Arithmetic Operations’ chapter)

Special Applications

Blackfin DSP Instruction Set Reference 14-11

Vector Operations ”’””"/’@&

14.4

14.4.1

14.4.2

14-12

Vector Add / Subtract

General Form

dest=src reg O+ |+src reg 1

dest=src reg 0+ src reg 1

dest=src reg O+-src reg 1

dest =src_reg 0—-src_reg_1

dest O=src_reg O+[+ src reg_1, dest 1=src reg O—}-src reg 1
dest O=src reg O+|-src reg 1, dest 1=src reg O+ src reg 1
dest O=src reg O+src reg 1, dest 1=src reg O—src reg 1
dest 0=A1+AQ, dest 1=A1-A0

dest 0=A0+Al, dest 1=A0-Al

Syntax

DUAL 16-BIT OPERATIONS

Dreg = Dreg +|+ Dreg (opt_modeQ) ; /l add | add (b)

Dreg = Dreg —|+ Dreg (opt_mode0) ; I/ subtract | add (b)
Dreg = Dreg +|- Dreg (opt_mode0) ; /I add | subtract (b)
Dreg = Dreg —|- Dreg (opt_mode0) ; [l subtract | subtract (b)

QUAD 16-BIT OPERATIONS
Dreg = Dreg +|+ Dreg, Dreg = Dreg—|-Dreg (opt_model, opt_mode?) ;

[* add | add, subtract | subtract; the set of source registers must be the
same for each operation (b) */

Dreg = Dreg +|- Dreg, Dreg = Dreg—|+ Dreg (opt_model, opt_mode?) ;

[* add | subtract, subtract | add; the set of source registers must be the
same for each operation (b) */

DUAL 32-BIT OPERATIONS

Dreg = Dreg + Dreg, Dreg = Dreg—Dreg (opt_model) ;

[* add, subtract; the set of source registers must be the
same for each operation (b) */

DUAL 40-BIT ACCUMULATOR OPERATIONS

Dreg=Al1+ A0, Dreg=A1-A0 (opt_model); /* add, subtract Accumulators;
subtract AO from Al (b) */

Blackfin DSP Instruction Set Reference

Bma/(/?@

14.4.3

14.4.4

14.4.5

14.4.6

Table 14-1. Options for Opt_Mode O

Vector Operations

Dreg=A0+ A1, Dreg=A0-A1l (opt_model) /* add, subtract Accumulators;

subtract A1 from AO (b) */

Syntax Terminology

Dreg: RO, ..., R7

opt_mode0: optional (S), (CO), or (SCO)
opt_model: optional (S)
opt_mode2: optional (ASR), or (ASL)

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Vector Add / Subtract instruction simultaneously adds and/or subtracts two pairs of registered
numbers. It then stores the results of each operation into a separate 32-bit data register or 16-bit
half-register, according to the syntax used. The destination register for each of the quad or dua
versions must be unique.

Options

The Vector Add / Subtract instruction provides three option modes:

¢ opt_mode0 supports the Dual 16-Bit Operations versions of thisinstruction.

* opt_model supports the Quad 16-Bit Operations, 32-bit and 40-bit operations.

¢ opt_mode2 supports the Quad 16-Bit Operations versions of this instruction.

Table 14.6 describes the options that the three opt_modes support.

Mode Option Description
S saturate the results at 16 bits
opt-mode0 CO cross option. Swap the order of the results in the destination register.
SCO saturate and cross option. Combination of (S) and (CO) options.
opt_model S saturate the results at 16 or 32 bits, depending on the operand size
arithmetic shift right. Halve the result (divide by 2) before storing in the
destination register. If specified with the S (saturation) flag in Quad 16-Bit
ASR : o . S
Operand versions of this instruction, the scaling is performed before
saturation.
opt_mode2 - — -
arithmetic shift left. Double the result (multiply by 2, truncated) before
ASL storing in the destination register. If specified with the S (saturation) flag in
Quad 16-Bit Operand versions of this instruction, the scaling is performed
before saturation.

Blackfin DSP Instruction Set Reference

14-13

Vector Operations ”’””"/’@&

14.4.7

14.4.8

14.4.9

14.4.10

14-14

The options shown for opt_mode2 are scaling options.

Flags Affected

Thisinstruction affects the following flags:
* AZissetif any results are zero; cleared if al are non-zero.
* AN issetif any results are negative; cleared if all non-negative.

* ACOissetif the operation on theright-hand of the instruction pair generates a carry; cleared if
no carry.

* AC1lissetif the operation on the left-hand of the instruction pair generates a carry; cleared if
no carry.

* Vissetif any results overflow; cleared if none overflows.
e VSissetif Visset; unaffected otherwise.

All other flags are unaffected.

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of this instruction can beissued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

Example

r5=r3+[+r4 ; /I dual 16-bit operations, add|add

ré=ro-|+ri(s) ; /I same as above, subtractjadd with saturation

rO=r2+[-r1(co) ; /* add|subtract with half-word results crossed
over in the destination register */

r7=r3-|-r6(sco) ; /* subtract|subtract with saturation and half-
word results crossed over in the destination
register */

r5=r3+[+rd, r7=r3-|-r4 ; /* quad 16-bit operations, add|add,
subtract|subtract */

r5=r3+|-r4, r7=r3-[+r4 ; /* quad 16-bit operations, add|subtract,
subtractjadd */

Blackfin DSP Instruction Set Reference

Bma/(/?@

r5=r3+[-r4, r7=r3-|+rd(asr) ;

r5=r3+[-r4, r7=r3-[+rd(ad) ;

r2=r0+rl, r3=r0-rl1;
r2=r0+rl, r3=r0-ri(s) ;

r4=al+a0, r6=al-al ;

rd=al+a0, r6=al-al(s) ;

14.4.11 Also See

Vector Operations

[* quad 16-bit operations, add|subtract,
subtract|add, with all results divided by 2
(right shifted 1 place) before storing into
destination register */

[* quad 16-bit operations, add|subtract,
subtractjadd, with all results multiplied by 2
(Ieft shifted 1 place) before storing into
destination register dual */

/I 32-bit operations

/I dual 32-bit operations with saturation

[* dual 40-bit Accumulator operations, AO
subtracted from A1 */

/* dual 40-bit Accumulator operations with
saturation, A1 subtracted from AO */

Add (in the “Arithmetic Operations” chapter), Subtract (in the “Arithmetic Operations’ chapter)

14.4.12 Special Applications

FFT butterfly routines in which each of the registers is considered a single complex number often

use the Vector Add / Subtract instruction.

ro=r2+|-rl(co);

Blackfin DSP Instruction Set Reference

//'1f r1 = 0x0003 0004 and r2 = 0x0001 0002, then . . .

/... produces rO = OxFFFE 0004

14-15

Vector Operations ”’””"/’@&

14.5

14.5.1

14.5.2

14.5.3

14.5.4

14.5.5

14-16

Vector Arithmetic Shift

General Form

dest_reg = src_reg >>> shift_magnitude (V)
dest_reg= ASHIFT src_reg BY shift_magnitude (V)

Syntax

CONSTANT SHIFT MAGNITUDE

Dreg = Dreg >>> uimm4 (V) ; /I arithmetic shift right, immediate (b)

Dreg = Dreg << uimm4 (V,S) ; /I arithmetic shift left, immediate with saturation (b)

REGISTERED SHIFT MAGNITUDE

Dreg = ASHIFT Dreg BY Dreg lo (V) ; /I arithmetic shift (b)

Dreg = ASHIFT Dreg BY Dreg lo(V, S); /I arithmetic shift with saturation (b)
ARITHMETIC LEFT SHIFT IMMEDIATE

There is no syntax specific to avector arithmetic left shift immediate instruction. Use the Vector

Logical Shift syntax for vector left shifting, which accomplishes the same function for sign-
extended numbers in number-normalizing routines. See‘“>>>" SYNTAX’ notes for caveats.

Syntax Terminology

Dreg: RO, ..., R7
Dreg_lo: RO.L, ..., R7.L
uimm4: unsigned 4-hit field, with arange of 0 through 15

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Vector Arithmetic Shift instruction arithmetically shifts a pair of half-word registered numbers
a specified distance and direction. Though the two half-word registers are shifted at the sametime,
the two numbers are kept separate.

Arithmetic right shifts preserve the sign of the pre-shifted value. The sign bit value back-fills the

left-most bit position vacated by the arithmetic right shift. For positive numbers, this behavior is
equivalent to the logical right shift for unsigned numbers.

Blackfin DSP Instruction Set Reference

Bma/(/?@ Vector Operations

Only arithmetic right shifts are supported. Left shifts are performed aslogical |eft shifts that may
not preserve the sign of the original number. In the default case — without the optional saturation
option —numbers can be left shifted so far that all the sign bits overflow and are lost. However,
when the saturation option is enabled, aleft shift that would otherwise shift non-sign bits off the
left side saturates to the maximum positive or negative value instead. So, with saturation enabled,
the result always keeps the same sign as the original number.

See Section 1.5.5, “ Saturation,” on page 1-6 for a description of saturation behavior.

“>>>” and “<<“ SYNTAX

The two half-word registersin dest_reg are right shifted by the number of places specified by
shift_magnitude and the result stored into dest_reg. The datais always a pair of 16-bit half-
registers. Valid shift_magnitude values are 0 — 15.

“ASHIFT” SYNTAX

Both half-word registersin src_reg are shifted by the number of places prescribed in
shift_magnitude and the result stored into dest_reg.

Thethe sign of the shift magnitude determines the direction of the shift for the ASHIFT versions,
asfollows:

* Positive shift magnitudes without the saturation (—, S) flag produce LOGICAL LEFT shifts.
¢ Positive shift magnitudes with the saturation (—, S) flag produce ARITHMETIC LEFT shifts
¢ Negative shift magnitudes produce ARITHMETIC RIGHT shifts.

In essence, the magnitude is the power of 2 multiplied by the src_reg number. Positive magnitudes
cause multiplication (N x 2") whereas negative magnitudes produce division (N x 2" or N/2").

The dest_reg and src_reg are both pairs of 16-hit half-registers. Saturation of the result is optional.

Valid shift magnitudes for 16-bit src_reg are —16 through +15, zero included. If a number larger
than these is supplied, the instruction masks and ignores the more significant bits.

Thisinstruction does not implicitly modify the src_reg values. Optionally, dest_reg can be the

same D-register as src_reg. Using the same D-register for the dest_reg and the src_reg explicitly
modifies the source register at your discretion.

14.5.6 Option

The ASHIFT instruction supportsthe (—, S) option, which saturates the result.

14.5.7 Flags Affected

Thisinstruction affects flags as follows:
* AZissetif either result is zero; cleared if both are non-zero.
* AN issetif either result is negative; cleared if both are non-negative.
* Vissetif either result overflows; cleared if neither overflows.

Blackfin DSP Instruction Set Reference 14-17

Vector Operations ”’””"/’@&

e VSissetif V is set; unaffected otherwise.

All other flags are unaffected.

14.5.8 Required Mode

User & Supervisor

14.5.9 Parallel Issue

The 32-bit versions of this instruction can beissued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

14.5.10 Example

r4=r5>>>3 (v) ; [* arithmetic right shift immediate R5.H and
R5.L by 3 bits (divide each half-word by 8)
If r5 = 0x8004 OOOF then the result is r4 = 0xFO00 0001*/

r4=r5>>>3 (v, s) ; /I same as above, but saturate the result

r2=ashift r7 by r5.1 (v) ; [* arithmetic shift (right or left, depending on
sign of r5.1) R7.H and R7.L by magnitude of
R5.L */

r2=ashift r7 by r5.1 (v, 9) ; I/l same as above, but saturate the result

r2=r5<<7(v,s) ; * logical |eft shift immediate R5.H and R5.L by 7 bits,
saturated */

145.11 Also See

Vector Logical Shift, Arithmetic Shift (in “ Shift / Rotate” Operations chapter), Logical Shift (in
“Shift / Rotate” Operations chapter)

14.5.12 Special Applications

14-18 Blackfin DSP Instruction Set Reference

Bma/(/?@ Vector Operations

14.6 Vector Logical Shift

14.6.1 General Form

dest_reg = src_reg >> shift_magnitude (V)
dest_reg = src_reg << shift_magnitude (V)
dest reg = LSHIFT src_reg BY shift_magnitude (V)

14.6.2 Syntax

CONSTANT SHIFT MAGNITUDE
Dreg = Dreg >> uimm4 (V) ; Il logical shift right, immediate (b)
Dreg = Dreg << uimmé4 (V) ; I logical shift left, immediate (b)

REGISTERED SHIFT MAGNITUDE
Dreg = LSHIFT Dreg BY Dreg_lo (V) ; I/ logical shift (b)
14.6.3 Syntax Terminology

Dreg: RO, ..., R7

Dreg_lo: RO.L, ..., R7.L

uimmd4: unsigned 4-bit field, with arange of 0 through 15
14.6.4 Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

14.6.5 Functional Description
The Vector Logical Shift logically shiftsapair of half-word registered numbers a specified distance
and direction. Though the two half-word registers are shifted at the same time, the two numbers
are kept separate.

Logical shifts discard any bits shifted out of the register and backfill vacated bits with zeros.

“>>” AND “<<” SYNTAX

The two half-word registersin dest_reg are shifted by the number of places specified by
shift_magnitude and the result stored into dest_reg. The datais always a pair of 16-bit half-
registers. Valid shift_magnitude values are 0 — 15.

Blackfin DSP Instruction Set Reference 14-19

Vector Operations ”’””"/’@&

14.6.6

14.6.7

14.6.8

14.6.9

14-20

“LSHIFT” SYNTAX

Both half-word registersin src_reg are shifted by the number of places prescribed in
shift_magnitude, and the result is stored into dest_reg.

For the LSHIFT versions, the sign of the shift magnitude determines the direction of the shift.
¢ Positive shift magnitudes produce LEFT shifts.
* Negative shift magnitudes produce RIGHT shifts.

The dest_reg and src_reg are both pairs of 16-bit half-registers.

Valid shift magnitudes for 16-bit src_reg are —16 through +15, zero included. If a number larger
than these is supplied, the instruction masks and ignores the more significant bits.

This instruction does not implicitly modify the src_reg values. Optionally, dest_reg can be the

same D-register as src_reg. Using the same D-register for the dest_reg and the src_reg explicitly
modifies the source register at your discretion.

Flags Affected

Thisinstruction affects flags as follows:
* AZissetif either result is zero; cleared if both are non-zero.
* AN issetif either result is negative; cleared if both are non-negative.

¢ Viscleared.

All other flags are unaffected.

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of this instruction can be issued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

Example

r4=r5>>3 (v) ; /* logical right shift immediate R5.H and
R5.L by 3 bits*/

rd=r5<<3 (v) ; [* logical left shift immediate R5.H and R5.L
by 3 bits*/

r2=Ishift r7 by r5.l (v) ; /* logically shift (right or left, depending on
sign of r5.1) R7.H and R7.L by magnitude of
R5.L */

Blackfin DSP Instruction Set Reference

Bma/(/?@ Vector Operations

14.6.10 Also See

Vector Arithmetic Shift, Arithmetic Shift (in “ Shift / Rotate” Operations chapter), Logical Shift (in
“Shift / Rotate” Operations chapter)

14.6.11 Special Applications

Blackfin DSP Instruction Set Reference 14-21

Vector Operations ”’””"/’@&

14.7

14.7.1

14.7.2

14.7.3

14.7.4

14.7.5

14.7.6

14.7.7

14-22

Vector Maximum

General Form

dest reg=MAX (src_reg O,src_reg 1) (V)

Syntax

Dreg = MAX (Dreg, Dreg) (V) ; /I dual 16-bit operations (b)

Syntax Terminology

Dreg: RO, ..., R7

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Vector Maximum instruction returns the maximum value (meaning the largest positive value,
nearest to Ox7FFF) of the 16-bit half-word source registers to the dest_reg.

The instruction compares the upper half-words of src_reg 0 and src_reg_1 and returns that
maximum to the upper half-word of dest_reg. It also compares the lower half-words of src_reg 0
and src_reg_1 and returns that maximum to the lower half-word of dest_reg. Theresultisa
concatenation of the two 16-bit maximum values.

The Vector Maximum instruction does not implicitly modify input values. The dest_reg can bethe
same D-register as one of the source registers. Doing so explicitly modifies that source register.

Flags Affected

Thisinstruction affects flags as follows:
* AZissetif either or both result is zero; cleared if both are non-zero.
* AN issetif either or both result is negative; cleared if both are non-negative.

¢ Viscleared.

All other flags are unaffected.

Required Mode

User & Supervisor

Blackfin DSP Instruction Set Reference

Bma/(/?@ Vector Operations

14.7.8 Parallel Issue

The 32-bit versions of thisinstruction can beissued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

14.7.9 Example

r7=max (r1, r0) (v) ;

Assume R1 = 0x0007 0000 and RO = 0x0000 000F, then R7 = 0x0007 00OF.
Assume R1 = OxFFF7 8000 and RO = OX000A 7FFF, then R7 = 0x000A 7FFF.
Assume R1 = 0x1234 5678 and RO = 0x0000 000F, then R7 = 0X 1234 5678.

14.7.10 Also See

Vector Search, Vector Minimum, or Maximum and Minimum instructions in “Arithmetic
Operations’ chapter

14.7.11 Special Applications

Blackfin DSP Instruction Set Reference 14-23

Vector Operations ”’””"/’@&

14.8 Vector Minimum

14.8.1 General Form

dest reg=MIN (src_reg O,src reg 1) (V)

14.8.2 Syntax

Dreg = MIN (Dreg, Dreg) (V) ; /I dual 16-hit operation (b)

14.8.3 Syntax Terminology

Dreg: RO, ..., R7

14.8.4 Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

14.8.5 Functional Description

The Vector Minimum instruction returns the minimum value (the most negative value or the value
closest to 0x8000) of the 16-bit half-word source registersto the dest_reg.

This instruction compares the upper half-words of src_reg 0 and src_reg_1 and returns that
minimum to the upper half-word of dest_reg. It also compares the lower half-words of src_reg 0
and src_reg_1 and returns that minimum to the lower half-word of dest_reg. Theresultisa
concatenation of the two 16-bit minimum values.

Theinput values are not implicitly modified by thisinstruction. The dest_reg can be the same D-
register as one of the source registers. Doing so explicitly modifies that source register.

14.8.6 Flags Affected

Thisinstruction affects flags as follows:
* AZissetif either or both result is zero; cleared if both are non-zero.
* AN issetif either or both result is negative; cleared if both are non-negative.

¢ Viscleared.

All other flags are unaffected.

14.8.7 Required Mode

User & Supervisor

14-24 Blackfin DSP Instruction Set Reference

Bma/(/?@ Vector Operations

14.8.8 Parallel Issue

The 32-bit versions of thisinstruction can beissued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

14.8.9 Example

r7=min(rl, r0) (v) ;

Assume R1 = 0x0007 0000 and RO = 0x0000 000F, then R7 = 0x0000 0000.
Assume R1 = OxFFF7 8000 and RO = OX000A 7FFF, then R7 = OxFFF7 8000.
Assume R1 = 0x1234 5678 and RO = 0x0000 000F, then R7 = 0X 0000 O00F.

14.8.10 Also See

Vector Search, Vector Maximum, or Maximum and Minimum instructions in “Arithmetic
Operations’ chapter

14.8.11 Special Applications

Blackfin DSP Instruction Set Reference 14-25

Vector Operations ”’””"/’@&

14.9

14.9.1

14.9.2

14.9.3

14.9.4

14-26

Vector Multiply

Simultaneous Issue and Execution

A pair of compatible, scalar (individual) Multiply instructions from Section 10.10, “Multiply,” on
page 10-24 can be combined into a single Vector Multiply instruction. The vector instruction
executes the two scalar operations simultaneously and saves the results as a vector coupl et.

See the Arithmetic Operations “Multiply” instruction on page 10-24 for the scalar instruction
details.

Any MACO scalar Multiply instruction can be combined with a compatible MACL1 scalar Multiply
instruction under the following conditions:

1. Both scalar instructions must share the same mode option (ex: default, IS, 1U, T, etc).
Exception: the MACL instruction can optionally employ the mixed mode (M) that does not
apply to MACO.

2. Both scalar instructions must share the same pair of source registers, but can reference
different halves of those registers.

3. Both scalar operations must write to the same sized destination registers, either 16- or 32-hits.

4. The destination registers for both scalar operations must form a vector couplet, as described
below.

a. 16-bit: storeresultsin the upper- and lower-hal ves of the same 32-bit Dreg. MACO writes
to the lower half and MAC1 writes to the upper half.

b. 32-bit: storeresultsin valid Dreg pairs. MACO writes to the pair’'s lower (even-numbered)
Dreg and MAC1 writesto the upper (odd-numbered) Dreg.

Valid Dreg pairs are R7:6, R5:4, R3:2, and R1:0.

Syntax

Separate the two compatible scalar instructions with acommato produce a vector instruction. Add
a semicolon to the end of the combined instruction, as usual. The order of the MAC operations on
the command line is arbitrary.

Instruction Length

Thisinstruction is 32-bits long.

Flags Affected

Thisinstruction affects the following flags:
* Vissetif any result saturates; cleared if none saturates.
e VSissatif V isset; unaffected otherwise.

All other flags are unaffected.

Blackfin DSP Instruction Set Reference

Bma/(/?@

14.9.5 Example

r2.h=r7.1*r6.h, r2.|1=r7.h*r6.h ;

r4.1=r1.1*r0.l, r4.h=r1.h*r0.h;
r0.h=r3.h*r2.1 (m), rO.I1=r3.1*r2. ;

r5.h=r3.h*r2.h (M), r5.1=r3.1*r2.I (fu) ;

r0.h=r3.h*r2.h, rO.I=r3.1*r2.l (is) ;

r3.h=r0.h*r1.h, r3.1=r0.I*r1.| (s2rnd) ;
rO.l=r7.1*r6.l, r0.h=r7.h*r6.h (iss2) ;

r7=r2.1*r5.1, r6=r2.n*r5.h ;

ro=rd.1*r7., rl1=r4.h*r7.h (2rnd) ;

Blackfin DSP Instruction Set Reference

Vector Operations

[* simultaneous MACO and MAC1 execution,
16-bit results. Both results are signed
fractions. */

[/l same as above. MAC order is arbitrary.

/* MAC1 multiplies asigned fraction by an
unsigned fraction. MACO multipliestwo
signed fractions. */

/* MAC1 multiplies signed fraction by
unsigned fraction. MACO multiplies two
unsigned fractions. */

/* both MACs perform signed integer
multiplication. */

/* MAC1 and MACO multiply signed
fractions. Both scale the result on the way to
the destination register. */

/* both MACs process signed integer operands
and scale and round the result on the way to
the destination half-registers. */

/* both operations produce 32-hit results and
save in aDreg pair. */

[* same as above, but with signed fraction
scaling mode. Order of the MAC instructions
makes no difference. */

14-27

Vector Operations ”’””"/’@&

14.10

14.10.1

14.10.2

14.10.3

14-28

Vector Multiply and Multiply-Accumulate

Simultaneous Issue and Execution

A pair of compatible, scalar (individual) instructions from...
* Section 10.11, “Multiply and Multiply-Accumulate to Accumulator,” on page 10-28
* Section 10.12, “Multiply and Multiply-Accumulate to Half-Register,” on page 10-31
* Section 10.13, “Multiply and Multiply-Accumulate to Data Register,” on page 10-36

...can be combined into a single vector instruction. The vector instruction executes the two scalar
operations simultaneously and saves the results as a vector couplet.

See the Arithmetic Operations sections listed above for the scalar instruction details.

Any MACO scalar instruction from the list above can be combined with a compatible MAC1 scalar
instruction under the following conditions:

1. Both scalar instructions must share the same mode option (ex: default, IS, 1U, T, etc).
Exception: the MACL instruction can optionally employ the mixed mode (M) that does not
apply to MACO.

2. Both scalar instructions must share the same pair of source registers, but can reference
different halves of those registers.

3. If both scalar operations write to destination Data registers, them must write to the same sized
destination Data registers, either 16- or 32-bits.

4. The destination Data registers (if applicable) for both scalar operations must form a vector
couplet, as described below.

a. 16-hit: store the results in the upper- and lower-halves of the same 32-bit Dreg. MACO
writes to the lower half, and MAC1 writesto the upper half.

b. 32-bit: storetheresultsin valid Dreg pairs. MACO writesto the pair’'s lower (even-
numbered) Dreg, and MAC1 writes to the upper (odd-numbered) Dreg.

Valid Dreg pairs are R7:6, R5:4, R3:2, and R1:0.

Syntax

Separate the two compatible scalar instructions with acommato produce a vector instruction. Add
a semicolon to the end of the combined instruction, as usual. The order of the MAC operations on
the command line is arbitrary.

Instruction Length

Thisinstruction is 32-bits long.

Blackfin DSP Instruction Set Reference

Bma/(/?@

14.10.4 Flags Affected

Vector Operations

Theflags reflect the results of the two scalar operations. This instruction affects flags as follows:

* Vissetif any result extracted to a Dreg saturates; cleared if no Dregs saturate.

* VSissetif V isset; unaffected otherwise.

* AVOissetif resultin Accumulator AO (MACO operation) saturates; cleared if A0 result does

not saturate.

* AVOSissetif AVOis set; unaffected otherwise.
e AVlissetif resultin Accumulator A1 (MACL operation) saturates; cleared if A1 result does

not saturate.

e AV1Sissetif AV1isset; unaffected otherwise.

All other flags are unaffected.

14.10.5 Example

Result is 40-bit Accumulator

al=r2.I*r3.h, a0=r2.h*r3.h;
a0=r1.I*r0.l, al+=r1.h*r0.h;
al+=r3.h*r3.l, ad=r3.h*r3.h;

al=r3.h*r2.I (m), a0+=r3.I*r2. ;

al=r7.h*r4.h (m), aO+=r7.1*r4.| (fu) ;

al+=r3.h*r2.h, a0=r3.1*r2.| (is) ;

al=r6.h*r7.h, a0+=r6.1*r7.l (W32) ;

Blackfin DSP Instruction Set Reference

/* both multiply signed fractionsinto separate
Accumulators */

/* same as above, but sum result into A1.
MAC order isarbitrary. */

[* sum product into A1, subtract product from
AO0*/

/* MAC1 multiplies asigned fraction in r3.h
by an unsigned fractioninr2.l. MACO
multiplies two signed fractions. */

/* MAC1 multiplies signed fraction by
unsigned fraction. MACO multiplies and
accumulates two unsigned fractions. */

/* both MACs perform signed integer
multiplication */

/* both MACs multiply signed fractions, sign
extended, and saturate both Accumulators at
bit 31 */

14-29

Vector Operations

14-30

Result is 16-bit half D-register
r2.h=(al=r7.I*r6.h), r2.I=(a0=r7.h*r6.h) ;

r4.1=(a0=r1.1*r0.l), r4.h=(al+=r1.h*r0.h) ;

r7.h=(al+=r6.h*r5.1), r7.I=(a0=r6.h*r5.h) ;
r0.h=(al=r7.h*r4.l) (m), rO.I=(a0+=r7.1*r4.l) ;

Blﬂl.’l(/r@&

/* simultaneous MACO and MAC1
execution, both are signed fractions,

both products load into the Accumulators,
MAC1 into half-word registers. */

/* same as above, but sum result into A1l. ;
MAC order is arbitrary.*/

/l suminto A1, subtract into A0 //

/* MAC1 multiplies a signed fraction by an
unsigned fraction. MACO multiplies two signed
fractions. */

r5.h=(al=r3.h*r2.h) (m), r5.I=(a0+=r3.I*r2.l) (fu) ; /* MAC1 multiplies signed fraction by

r0.h=(al+=r3.h*r2.h), r0.I=(a0=r3.1*r2.l) (is) ;
r5.h=(al=r2.h*rl.h), a0+=r2.I*rl.l ;

r3.h=(al=r2.h*rl.h) (m), a0=r2.1*r1.l ;

r3.h=al, r3.I=(a0+=r0.I*r1.l) (s2rnd) ;

unsigned fraction. MACO multiplies two
unsigned fractions. */

* both MACs perform signed integer
multiplication. */

/* both MACs multiply signed fractions.
MACO does not copy the accum result. */

/* MAC1 multiplies signed fraction by
unsigned fraction and uses all 40 bits of A1.
MACO multiplies two signed fractions. */

/* MAC1 copies Accumulator to register half.
MACO multiplies signed fractions. Both scale
the result and round on the way to the
destination register. */

r0.I=(a0+=r7.1*r6.1), r0.h=(al+=r7.h*r6.h) (iss2) ; /* both MACs process signed integer the way

Result is 32-bit D-register
r3=(al=r6.h*r7.h), r2=(a0=r6.1*r7.1) ;

r4=(a0=r6.1*r7.1), r5=(al+=r6.h*r7.h) ;

r7=(al+=r3.h*r5.h), r6=(a0-=r3.I*r5.1) ;
rl=(al=r7.1*r4.l) (m), rO=(a0+=r7.h*r4.h) ;

to the destination half-registers. */

/* simultaneous MACO and MAC1 execution,
both are signed

fractions, both products load into the
Accumulators */

/* same as above, but sum result into A1. MAC
order isarbitrary. */

/l suminto A1, subtract into AO

/* MAC1 multiplies a signed fraction by an
unsigned fraction. MACO multiplies two
signed fractions. */

r5=(al=r3.h*r7.h) (m), r4=(a0+=r3.1*r7.l) (fu);/* MAC1 multiplies signed fraction by

rl=(al+=r3.h*r2.h), rO=(a0=r3.1*r2.1) (is) ;

unsigned fraction. MACO multiplies two
unsigned fractions. */

* both MACs perform signed integer
multiplication */

Blackfin DSP Instruction Set Reference

Bma/(/?@ Vector Operations

r5=(al-=r6.h*r7.h), a0+=r6.1*r7.l ; /* both MACs multiply signed fractions. MACO
does not copy the accum result */
r3=(al=r6.h*r7.h) (m), a0-=r6.1*r7.| ; /* MAC1 multiplies signed fraction by unsigned

fraction and uses all 40 bits of A1. MACO
multiplies two signed fractions. */

r3=al, r2=(a0+=r0.1*r1.) (s2rnd) ; /* MAC1 moves Accumulator to register.
MACO multiplies signed fractions. Both scale
the result and round on the way to the
destination register. */

ro=(a0+=r7.1*r6.l), ri=(al+=r7.h*r6.h) (iss2) ;/* both MACs process signed integer operands
and scale the result on the way to the
destination registers.*/

Blackfin DSP Instruction Set Reference 14-31

Vector Operations ”’””"/’@&

14.11

14.11.1

14.11.2

14.11.3

14.11.4

14.11.5

14.11.6

14.11.7

14-32

Vector Negate (Two’'s Complement)

General Form

dest_reg = — source _reg (V)

Syntax

Dreg = —Dreg (V) ; /I dual 16-bit operation (b)

Syntax Terminology

Dreg: RO, ..., R7

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Vector Negate instruction returns the same magnitude with the opposite arithmetic sign,
saturated for each 16-bit half-word in the source. The instruction calculates by subtracting the
source from zero.

See Section 1.5.5, “ Saturation,” on page 1-6 for a description of saturation behavior.

Flags Affected

Thisinstruction affects flags as follows:
* AZissetif either or both results are zero; cleared if both are non-zero.
* AN issetif either or both results are negative; cleared if both are non-negative.
* Vissetif either or both results saturate; cleared if neither saturates.
e VSissetif Visset; unaffected otherwise.
* ACOissetif carry occurs from either or both results; cleared if neither produces a carry.

All other flags are unaffected.

Required Mode

User & Supervisor

Blackfin DSP Instruction Set Reference

Bma/(/?@ Vector Operations

14.11.8 Parallel Issue

The 32-bit versions of thisinstruction can beissued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

14.11.9 Example

r5=—3(v); /* R5.H becomes the negative of R3.H and
R5.L becomes the negative of R3.L
If r3 = 0x0004 7FFF the result isr5 = OxFFFC 8001*/

14.11.10 Also See

Negate (Two's Complement) in the “Arithmetic Operations’ chapter.

14.11.11 Special Applications

Blackfin DSP Instruction Set Reference 14-33

Vector Operations ”’””"/’@&

14.12 Vector Pack

14.12.1 General Form

Dest_reg = PACK (src_half_0, src_half_1)

14.12.2 Syntax

Dreg =PACK (Dreg_lo hi,Dreg lo hi); //(b)

14.12.3 Syntax Terminology

Dreg: RO, ..., R7

Dreg lo_hi: ROLL, ..., R7.L, RO.H, .., R7.H

14.12.4 Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

14.12.5 Functional Description

The Vector Pack instruction packs two 16-bit half-word numbersinto the halves of a 32-hit data
register.

15 0
rc_half 0 half_word_0
src_half_1 half_word_1
Bl 16 15 0
dest_reg half_word_0 half_word_1

14.12.6 Flags Affected

None.

14.12.7 Required Mode

User & Supervisor

14-34 Blackfin DSP Instruction Set Reference

Bma/(/?@ Vector Operations

14.12.8 Parallel Issue

The 32-bit versions of thisinstruction can beissued in parallel with specific other 16-bit
instructions. For details, see Chapter 15, “Issuing Parallel Instructions.”

14.12.9 Example

r3=pack(r4.l, r5.1) ; // pack low / low half-words
r1=pack(r6.l, r4.h) ; // pack low / high half-words
rO=pack(r2.h, r4.l) ; // pack high/low half-words
r5=pack(r7.h, r2.h) ; // pack high / high half-words

14.12.10 Also See

Quad 8-Bit Pack (in “Video Pixel Operations’ chapter)

14.12.11 Special Applications
/['1f r4.l = OXDEAD and r5.] = OXBEEF, then . . .

r3 =pack (r4.l, r5.) ;
/... produces r3 = OXDEAD BEEF

Blackfin DSP Instruction Set Reference 14-35

Vector Operations ”’””"/’@&

14.13

14.13.1

14.13.2

14.13.3

14.13.4

14.13.5

14.13.6

14-36

Vector Search

General Form

(dest_pointer_hi, dest_pointer_lo) = SEARCH src_reg (searchmode)

Syntax

(Dreg, Dreg) = SEARCH Dreg (searchmode) ; Il (b)

Syntax Terminology

Dreg: RO, ..., R7
searchmode: (GT), (GE), (LE), or (LT)

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

Thisinstruction is used in aloop to locate a maximum or minimum element in an array of 16-bit
packed data. Two values are tested at atime.

The Vector Search instruction compares two 16-bit, signed half-words to values stored in the
Accumulators. Then, it conditionally updates each Accumulator and destination pointer based on
the comparison.

Pointer register PO is always the implied array pointer for the elements being searched.

More specifically, the signed high half-word of src_reg is compared in magnitude with the 16 low-
order bitsin Al. If src_reg_hi meetsthe comparison criterion, then Al is updated with src_reg_hi,
and the value in pointer register PO is stored in dest_pointer_hi. The same operation is performed
for src_reg_low and AQ.

Based on the search mode specified in the syntax, the instruction tests for maximum or minimum
signed values.

Values are sign extended when copied into the Accumulator(s).
See “Example” for one way to implement the search loop. After the vector search loop concludes,

A1 and A0 hold the two surviving elements, and dest_pointer_hi and dest_pointer_|o contain their
respective addresses. The next step isto select the final value from these two surviving elements.

Modes

The four supported compare modes are specified by the mandatory searchmode flag, that can be
any one of the following

Blackfin DSP Instruction Set Reference

Bma/(/?@ Vector Operations

Table 14-2. Compare Modes

Mode Description

(GT) greater than. Find the location of the first maximum number in an array.

(GE) greater than or equal. Find the location of the last maximum number in an array.

(LT) less than. Find the location of the first minimum number in an array.

(LE) less than or equal. Find the location of the last minimum number in an array.
SUMMARY
Assumed Pointer PO
src_reg_hi Compared to least significant 16 bits of Al. If compare condition is met,

overwrites lower 16 bits of A1 and copies PO into dest_pointer_hi.

src_reg_lo Compared to least significant 16 bits of AQ. If compare condition is met,
overwrites lower 16 bits of AO and copies PO into dest_pointer_|o.

14.13.7 Flags Affected

None.

14.13.8 Required Mode

User & Supervisor

14.13.9 Parallel Issue

Thisinstruction can beissued in parallel with one 32-bit instruction, provided that load is based on
the PO pointer register. This condition isthe only case that supports parallel issue with Vector
Search.

14.13.10 Example

/* Initialize Accumulators with appropriate value for the type of search. */

r0.1=0x7fff;
r0.h=0;
a0=r0; /I max positive 16-bit value
al=r0; /I max positive 16-bit value
/* Initilaize R2. */
r2=[p0++];
Isetup (search_loop, search_loop) |cO=p1>>1; /I set up the loop
search_loop:
(r1,r0) = search r2 (le) || r2=[p0++] ; [* search for the last minimum

Blackfin DSP Instruction Set Reference 14-37

Vector Operations ”’””"/’@&

14.13.11

14.13.12

14-38

in all but the last element of the
array */
(r1,r0) = searchr2 (le) ; Il finally, search the last element

/* Thelower 16 bits of A1 and AO contain the last minimums of the array.
R1 contains the value of PO corresponding to the valuein A1l.

RO contains the value of PO corresponding to the valuein AO.

Next, compare A1 and AO together to find the

single, last minimum in the array. Then choose the corresponding

pointer from R1 or RO.

Note: In thisexample, the resulting pointers are 4 past the actual surviving array element due to the
post-increment operation. Subtract 4 before using the final pointer value. */

Also See

Vector Maximum, Vector Minimum, or Maximum and Minimum instructions explained in
Chapter 15, “Issuing Parallel Instructions.”

Special Applications

Thisinstruction isused in aloop to locate an element in a vector according to the element’s value.

Blackfin DSP Instruction Set Reference

ISSUING PARALLEL INSTRUCTIONS 15

L R 010 = Y 15-2
15.2 Supported Parallel Combinationscccccverieeeeririeeienesere e 15-2
15.3 Parallel ISSUE SYNAXooeeveieiieeeiiricrie et 15-2
154 32-Bit ALU/MAC INSLFUCHIONS ...c.eovviiiieiieiie et 15-2
155 16-Bit INSIIUCLIONS ...oviviiieiiie ettt 15-5
156 EXBMPIES .ooviieiieieie et eee s e ettt sttt nse e nennenne e 15-6
15.6.1 Two Parallel Memory Access INSEUCLioNSccvevveeeveeseriesinneene 15-6
15.6.2 One Ireg and One Memory Access Instruction in Parallel 15-7
15.6.2 One Ireg and One Memory Access Instruction in Parallel 15-7

Blackfin DSP Instruction Set Reference 15-1

Issuing Parallel Instructions ”’””"/’@&

15.1

15.2

15.3

15.4

15-2

Summary

The Blackfin is not superscalar; it does not execute multiple instructions at once. However, it does
permit up to three instructionsto beissued in parallel with some limitations. A multi-issue
instruction is 64-bits in length and consists of one 32-bit instruction and two 16-bit instructions.
All three instructions execute in the same amount of time as the slowest of the three.

Supported Parallel Combinations

The diagram below illustrates the combinations for parallel issue that Blackfin supports.

32-bit ALU/MAC instruction 16-bit Instruction 16-bit Instruction

Parallel Issue Syntax

The syntax of aparallél issueinstructionis...

32-bit ALU/MAC instruction || A 16-bit instructions || A 16-bit instruction;

The vertical bar (||) indicates that the following instruction isto beissued in parallel with the
previous instruction. Note that the terminating semicolon appears only at the end of the parallel-
issue instruction.

It is possible to issue a 32-bit ALU/MAC instruction in parallel with only one 16-bit instruction
using the following syntax. Theresult isstill a64-bit instruction with a 16-bit no-op automatically
inserted into the unused 16-hbit slot.

32-bit ALU/MAC ingtruction || A 16-bit instruction;
Alternately, it is also possible to issue two 16-bit instructionsin parallel with one another without

an active 32-bit ALU/MAC instruction by using the MNOP instruction, shown below. Again, the
result is still a64-bit instruction.

MNOP || A 16-bit instructions || A 16-bit instruction;

See the MNOP (32-bit NOP) instruction description in Section 11.10, “No Op,” on page 11-20 of
this document. The MNOP instruction does not have to be explicitly included by the programmer;
the software tools prepend it automatically. The MNOP instruction will appear in disassembled
parallel 16-bit instructions.

32-Bit ALU/MAC Instructions

Thelist of 32-bit instructions that can be in a parallel instruction are shown below.

Blackfin DSP Instruction Set Reference

Bma/(/?@

Issuing Parallel Instructions

Table 15-1. 32-Bit DSP Instructions

SECTION INSTRUCTION NAME NOTES
gigg MIIEC-)FII\ICS Absolute Value
Add OnI_y the versior_'ns that support
optional saturation.
Exponent Detection
Maximum
Minimum
Modify — Decrement (for Accumulators, only)
Modify — Increment (for Accumulators, only) Accumulator versions, only.
Negate (Two's Complement) Accumulator versions, only.
Round Half-Word
Round — 12 Bit
Round — 20 Bit
Saturate
Sign Bit
Subtract Saturating versions, only.
(%IIIERATIONS Bit Field Deposit
Bit Field Extract
Bit Multiplex
Ones Population Count
OO N | BitWise XOR
MOVE Move Register ég[;it Accumulator versions,
Move Register Half
Logical Shift gﬁl-;it instruction size versions,
Rotate
EXTERNAL
EVENT No Op 32-bit MNOP, only
MANAGEMENT
\(gE’(é-II;OA!—F’I ONS Compare-Select (VIT_MAX)
Add on Sign
Multiply and Multiply-Accumulate to Accumulator
Multiply and Multiply-Accumulate to Half-Register
Multiply and Multiply-Accumulate to Data Register

Blackfin DSP Instruction Set Reference

15-3

Issuing Parallel Instructions

Table 15-1. 32-Bit DSP Instructions

15-4

Blﬂl.’l(/r@&

SECTION

INSTRUCTION NAME

NOTES

Vector Absolute Value

Vector Add / Subtract

Vector Arithmetic Shift

Vector Logical Shift

Vector Maximum

Vector Minimum

Multiply

Vector Negate (Two's Complement)

Vector Pack

Vector Search

VIDEO PIXEL
OPERATIONS

Byte Align

Disable Alignment Exception for Load

Quad 8-Bit Subtract-Absolute-Accumulate

Quad 8-Bit SAA Accumulator Extract

Quad 8-Bit Add

Quad 8-Bit Subtract

Quad 8-Bit Average — Byte

Quad 8-Bit Average — Half-Word

Quad 8-Bit Add / Clip

Quad 8-Bit Pack

Quad 8-Bit Unpack

Blackfin DSP Instruction Set Reference

Bma/(/?@

Issuing Parallel Instructions

15.5 16-Bit Instructions

The two 16-bit instructionsin a multi-issue instruction must each be from Groupl and Group2
instructions shown below.

Table 15-2. Groupl Compatible 16-Bit Instructions

SECTION

INSTRUCTION NAME

NOTES

ARITHMETIC
OPERATIONS

Add Immediate

Ireg versions only.

Modify — Decrement

Ireg versions only.

Modify — Increment

Ireg versions only.

Subtract Immediate

Ireg versions only.

LOAD / STORE

Load Pointer Register

Load Data Register

Load Half-Word — Zero-Extended

Load Half-Word — Sign-Extended

Load High Data Register Half

Load Low Data Register Half

Load Byte — Zero-Extended

Load Byte — Sign-Extended

Store Pointer Register

Store Data Register

Store High Data Register Half

Store Low Data Register Half

Store Byte

Blackfin DSP Instruction Set Reference

15-5

Issuing Parallel Instructions ”’””"/’@&

Table 15-3. Group2 Compatible 16-Bit Instructions

15.6

15.6.1

15-6

SECTION INSTRUCTION NAME NOTES
LOAD / STORE Load Data Register Ireg versions, only
Load High Data Register Half Ireg versions, only
Load Low Data Register Half Ireg versions, only
Store Data Register Ireg versions, only
Store High Data Register Half Ireg versions, only
Store Low Data Register Half Ireg versions, only

The following additional restrictions also apply to the 16-bit instructions of the multi-issue
instruction:

¢ Only one of the 16-hit instructions can be a store instruction.

* |f the two 16-bit instructions are memory access instructions, then both cannot use P-registers
as address registers. In this case, at least one memory access instruction must be an |-register
version.

Examples

Two Parallel Memory Access Instructions

/* Subtract-Absolute-Accumulate issued in parallel with the memory access instructions that fetch
the data for the next SAA instruction. This sequenceis executed in aloop to flip-flop back and
forth between the datain R1 and R3, then the datain RO and R2. */

saa (r1:0,r3:2) || rO=[i0O++] || r2=[il++4] ;
saa (r1:0, r3:2)(r) || r1=[i0++] || r3=[il++];
mnop || rl = [i0++] || r3 =[i1++] ;

Blackfin DSP Instruction Set Reference

Bma/(/?@

15.6.2

15.6.3

Issuing Parallel Instructions

One Ireg and One Memory Access Instruction in Parallel

/* Add on Sign while incrementing an Ireg and loading a data register based on the previous value
of thelreg. */

r7.h=r7.l=sign(r2.h)*r3.h + sign(r2.)*r3.1 || i0+=m3 || rO=[i0];

/I Add/subtract two vector values while incrementing an Ireg and loading a data register.
R2=R2+|+ R4,R4=R2-|- R4 (ASR) || 10 += MO (BREV) || R1 =[I0];

/* Multiply and accumulate to Accumulator while loading a data register and storing a data register
using an Ireg pointer. */
Al=R2.L*R1.L, AO=R2.H*R1.H || R2ZH=W[12++] || [I3++]=RS;

/* Multiply and accumulate while loading two data registers. One load uses an Ireg pointer. */
A1+=R0.L*R2.H,A0+=R0O.L*R2.L || R2.L=W[I2++] || RO=[I1--];
R3.H=(A1+=R0.L*R1.H), R3.L=(A0+=R0.L*R1.L) || RO=[PO++] || R1=[10];

/* Pack two vector values while storing a data register using an Ireg pointer and loading another
dataregister. */
R1=PACK(R1.H,RO.H) || [10++]=R0O || R2.L=W[I2++];

One Ireg Instruction in Parallel

/I Multiply-Accumul ate to a Data register while incrementing an Ireg.
ré=(a0+=r3.h*r2.h)(fu) || i2-=m0;

Blackfin DSP Instruction Set Reference 15-7

Issuing Parallel Instructions m,,,(/’@

15-8 Blackfin DSP Instruction Set Reference

INDEX

A V, overflow (D-register), 1-6, 1-7
ABS mnemonic, 10-2, 14-10 VS, sticky_overflow (D-register), 1-6
Absolute Vaueinstruction, 10-2 RND_MOD bit, 1-8
Accumulator
corresponding to MACs, 1-5 B
description, 1-4 Base Registers
extension registers AO.x and Al1.x, 4-3, 4- description, 1-5
12 binal point, 1-6
initializing, 3-3 Bit Clear instruction, 8-2
overflow arithmetic status flags, 1-5 Bit Field Deposit instruction, 8-10
saturation, 1-4 Bit Field Extraction instruction, 8-15
Accumulator to D-register Move Bit Multiplex instruction, 8-20
instruction, 4-2, 4-3 Bit Set instruction, 8-4
Accumulator to Half D-register Move Bit Test instruction, 8-8
instruction, 4-12, 4-14 Bit Toggle instruction, 8-6
Add Immediate instruction, 10-7 BITCLR mnemonic, 8-2
Add instruction, 10-4 BITMUX mnemonic, 8-20
Add on Sign instruction, 14-2 BITSET mnemonic, 8-4
Add with Shift instruction, 9-2 BITTGL mnemonic, 8-6
ALIGN16 mnemonic, 13-2 BITTST mnemonic, 8-8
ALIGN24 mnemonic, 13-2 Bit-Wise Exclusive-OR instruction, 7-10
ALIGN8 mnemonic, 13-2 BXOR mnemonic, 7-10
AND instruction, 7-2 BXORSHIFT mnemonic, 7-10
Arithmetic Shift instruction, 9-6 Byte Align instruction, 13-2
arithmetic status flags, (see "ASTAT BY TEOP16M mnemonic, 13-27
register"), 1-5 BY TEOP16P mnemonic, 13-12
ASHIFT...BY mnemonic, 9-6, 14-16 BY TEOP1P mnemonic, 13-16
ASTAT register BY TEOP2P mnemonic, 13-20
arithmetic status flags BY TEOP3P mnemonic, 13-6
ACQO, carry (ALUO), 1-5 BYTEPACK mnemonic, 13-25
AC1, carry (ALU1), 1-5 BY TEUNPACK mnemonic, 13-35
AN, negative, 1-5
AQ, divide primitive quotient, 1-5 C
AV0, overflow (A0), 1-5 . :
AV1, overflow (A1), 1-5 Call instruction, 2-6
AV 0, sticky overflow (A0), 1-5 CALL mnemonic, 2-6
AVSL, sticky overflow (A1), 1-6 CLI mnemonic, 11-10 .
AZ. zero, 1-6 Compare Accumulator instruction, 6-7
CC, control code bit, 1-6 Compare Data Register instruction, 6-2

Blackfin DSP Instruction Set Reference Index-1

Compare Pointer instruction, 6-5
Compare-Select (VIT_MAX) instruction, 14-
5

Conditional Jump instruction, 2-4

Core Synchronize instruction, 11-4

CSYNC mnemonic, 11-4

D

Data Address Generator (DAG)
description summary, 1-5
Data Cache Flush instruction, 12-4
Data Cache Line Invalidate instruction, 12-6
Data Cache Prefetch instruction, 12-2
Data Registers
description, 1-4
decimal point, 1-6
DEPOSIT mnemonic, 8-10
Disable Alignment Exception for Load
instruction, 13-4
Disable Interrupts instruction, 11-10
DISALGNEXCPT mnemonic, 13-4
Divide Primitive instruction, 10-9
DIVQ mnemonic, 10-9
DIVS mnemonic, 10-9
Dual 16-Bit Accumulator Extraction with Ad-
dition instruction, 13-10
Dual 16-Bit Add/ Clip instruction, 13-6

E
elipsismarks (“...”), 1-3
EMUEXCPT mnemonic, 11-8
Enable Interrupts instruction, 11-12
exceptions
addressviolations not flagged, 12-2, 12-4,
12-6, 12-8
alignment, 2-2, 3-4, 3-7, 3-9, 3-12, 3-15,
3-18, 3-25, 3-28, 3-30, 3-34, 5-2,
5-5,5-7,5-11, 5-15
alignment errors prevented, 13-4, 13-5,
13-8, 13-13, 13-18, 13-22, 13-25,
13-28, 13-32, 13-36, 13-37
code, 11-16

Index-2

Bmatg’@

Disable Alignment Exception for Load
instruction, 13-4
emulation, 11-8
Force Exception (EXCPT) instruction, 11-
16
graceful instruction abort, 5-5, 5-11, 5-15
handler routine, 11-16
illegal instruction, 11-8
none generated, 2-13
not invoked by Force Interrupt / Reset
instruction, 11-15
not masked by Disable Interrupts
instruction, 11-10
protection violation, 2-9, 4-4, 5-3, 5-7, 11-
2, 11-10, 11-12, 11-15
protection violations not flagged, 12-2,
12-4, 12-6, 12-8
resolved during synchronization, 11-4, 11-
5, 11-7
resolving before TESTSET operation
begins, 11-19
resolving before TESTSET operation
completes, 11-18
return from (RTX), 2-8, 2-9
undefined instruction, 3-5, 5-3
Exclusive-OR ingtruction, 7-8
EXCPT mnemonic, 11-16
EXPADJ mnemonic, 10-13
Exponent Detection instruction, 10-13
EXTRACT mnemonic, 8-15

F

FLUSH mnemonic, 12-4
FLUSHINV mnemonic, 12-6
Force Emulation instruction, 11-8
Force Exception instruction, 11-16
Force Interrupt / Reset instruction, 11-14
fractions
binal point, 1-6
binary convention, 1-6
Frame Pointer
description, 1-4

Blackfin DSP Instruction Set Reference

Blﬂl.’l(/r@

Idle instruction, 11-2
IDLE mnemonic, 11-2
IF CC JUMP mnemonic, 2-4
IF CC mnemonic, 4-6
IFLUSH mnemonic, 12-8
IMASK Register, 11-12
Index Register
description, 1-4
Instruction Cache Flush instruction, 12-8
Interrupt Mask (IMASK) register
restored by Interrupt Enable
instruction, 11-12

interrupts
disabling
Disable Interrupts (CLD)
instruction, 11-10
popping RETI from stack, 5-2
enabling
Enable Interrupts (STI)
instruction, 11-12
forcing

Force Interrupt / Reset (RAISE)
instruction, 11-14
NMI, return from (RTN), 2-8
priority, 11-14
return instruction (RTI), 2-8
uninterruptable instructions
linkage instruction,
UNLINK, 5-15
Pop Multiple, 5-11
Push Multiple, 5-5
Return from Interrupt (RTI), 2-9
Return from NMI (RTN), 2-9
Test and Set Byte (Atomic) instruc-
tion, TESTSET, 11-18
vector, 11-14

LINK,

J

Jump instruction, 2-2
JUMP mnemonic, 2-2

Blackfin DSP Instruction Set Reference

L
Length Registers
description, 1-5
LINK mnemonic, 5-14
Linkage instruction, 5-14
Load Byte — Sign-Extended instruction, 3-23
Load Byte — Zero-Extended instruction, 3-21
Load Data Register instruction, 3-6
Load Half-Word — Sign-Extended
instruction, 3-12
Load Half-Word — Zero-Extended
instruction, 3-9
Load High Data Register Half instruction, 3-
15
Load Immediate instruction, 3-2
Load Low Data Register Half instruction, 3-
18
Load Pointer Register instruction, 3-4
Logical Shift instruction, 9-11
L oop Bottom register
description, 1-4
Loop Count register
description, 1-4
LOOP mnemonic, 2-11
Loop Top register
description, 1-4
LSETUP mnemonic, 2-11
LSHIFT...BY mnemonic, 9-11, 14-19

M

MAX mnemonic, 10-15, 14-22
Maximum instruction, 10-15
MIN mnemonic, 10-17, 14-24
Minimum instruction, 10-17
mnemonic
ABS, 10-2, 14-10
ALIGN16, 13-2
ALIGN24, 13-2
ALIGNS, 13-2
ASHIFT...BY, 9-6, 14-16
BITCLR, 8-2
BITMUX, 8-20

Index-3

BITSET, 8-4
BITTGL, 8-6
BITTST, 8-8
BXOR, 7-10
BXORSHIFT, 7-10
BYTEOP16M, 13-27
BYTEOP16P, 13-12
BYTEOP1P, 13-16
BYTEOP2P, 13-20
BYTEOP3P, 13-6
BYTEPACK, 13-25
BYTEUNPACK, 13-35
CALL, 2-6

CLI, 11-10
CSYNC, 11-4
DEPOSIT, 8-10
DISALGNEXCPT, 13-4
DIVQ, 10-9

DIVS, 10-9
EMUEXCPT, 11-8
EXCPT, 11-16
EXPADJ, 10-13
EXTRACT, 8-15
FLUSH, 12-4
FLUSHINV, 12-6
IDLE, 11-2

IF CC, 4-6

IF CC IJUMP, 2-4
IFLUSH, 12-8
JUMP, 2-2

LINK, 5-14

LOOP, 2-11
LSETUP, 2-11
LSHIFT...BY, 9-11, 14-19
MAX, 10-15, 14-22
MIN, 10-17, 14-24
MNORP, 11-20

NOP, 11-20

ONES, 8-24

PACK, 14-34
PREFETCH, 12-2
RAISE, 11-14
RND, 10-43

Index-4

Bmatg’@

RND12, 10-45
RND20, 10-47
ROT...BY, 9-16
RTE, 2-8
RTI, 2-8
RTN, 2-8
RTS, 2-8
RTX, 2-8
SAA, 13-31
SEARCH, 14-36
SIGN, 14-2
SIGNBITS, 10-51
SSYNC, 11-6
ST, 11-12
TESTSET, 11-18
UNLINK, 5-14
VIT_MAX, 14-5
MNOP mnemonic, 11-20
MNOP used in parallel instruction issues, 15-
2,156
Modify — Decrement instruction, 10-19
Modify — Increment instruction, 10-21
Modify Registers
description, 1-5
Move Byte — Sign-Extended instruction, 4-19
Move Byte — Zero-Extended instruction, 4-17
Move CC instruction, 6-9
Move Conditional instruction, 4-6
Move Half-Word — Sign-Extended
instruction, 4-10
Move Half-Word — Zero-Extended
instruction, 4-8
Move Register Half instruction, 4-12
Move Register ingtruction, 4-2
Multiply (Modulo 232) instruction, 10-39
Multiply and Accumulate Unit (MAC)
combining MACO and MACloperations
invector instructions, 14-26, 14-28
description summary, 1-5
Multiply and Accumulate Unit 1 (MAC1)
mixed mode option (M), 10-24, 10-25, 10-
26, 10-28, 10-29, 10-31, 10-34, 10-
36, 10-37, 14-26, 14-28

Blackfin DSP Instruction Set Reference

Blﬂl.’l(/r@

Multiply and Multiply-Accumulate to Accu-
mulator instruction, 10-28

Multiply and Multiply-Accumulate to Data

Register instruction, 10-36

Multiply and Multiply-Accumulate to Half-

Register instruction, 10-31

Multiply instruction, 10-24

N

Negate (Two's Complement) instruction, 10-
41
Negate CC instruction, 6-12
No Op instruction, 11-20
NOP mnemonic, 11-20
NOT (1's Complement) instruction, 7-4
notation conventions
elipsismarks (“...”), 1-3
register pairs, 1-3
register portions, 1-3
set of registersin one instruction, 1-3

O

ONES mnemonic, 8-24
Ones Population Count instruction, 8-24
operator
—— autodecrement, 5-2, 5-4
—subtract, 10-45, 10-47, 10-53, 14-12
& logical AND, 7-2
&=logical AND assign, 6-9
* multiply, 10-24, 10-28, 10-31, 10-36,
14-2
*= multiply assign, 10-39
+ add, 9-4, 10-4, 10-45, 10-47, 13-10, 14-
12
++ autoincrement, 5-6, 5-9, 12-6, 12-8
+= add assign, 10-7, 10-21, 10-28, 10-31,
10-36
+|- vector add / subtract, 14-12
+|+ vector add / add, 14-12
< less-than, 6-2, 6-5, 6-7
<<logical left shift, 9-2, 9-4, 9-6, 9-11,
14-16, 14-19

Blackfin DSP Instruction Set Reference

<<=logical left shift assign, 9-11

<= |ess-than or equal, 6-2, 6-5, 6-7

= assign (representative sample, only), 3-
2,4-2,5-2,6-9, 7-10, 8-8, 9-2, 10-
2,13-2,14-2

=—negate (2’ scomplement) assign, 10-41,
14-32

—= subtract assign, 10-19, 10-28, 10-31,
10-36, 10-56

=! bit invert (1's complement) assign, 6-
12, 8-8

== compare-equal, 6-2, 6-5, 6-7

=~ multi-bit invert (1's complement)
assign, 7-4

>> |ogical right shift, 9-11, 14-19

>>=|ogical right shift assign, 9-11

>>> arithmetic right shift, 9-6, 14-16

>>>= arithmetic right shift assign, 9-6

A logical XOR, 7-8

A= |ogical XOR assign, 6-9

| logical OR, 7-6

—|- vector subtract / subtract, 14-12

—|+ vector subtract / add, 14-12

|= logical OR assign, 6-9

OR instruction, 7-6
overflow

arithmetic status flags, 1-5, 1-6, 1-7

behavior, 1-6, 1-7

implemented by user for the Multiply
(Modulo 2732) instruction, 10-39

impossibleinthe Multiply (Modulo 2732)
instruction, 10-39

prevention in Divide Primitive
instruction, 10-10, 10-11

P

PACK mnemonic, 14-34

Pointer Registers
description, 1-4

Pop instruction, 5-6

Pop Multipleinstruction, 5-9

PREFETCH mnemonic, 12-2

Index-5

Push instruction, 5-2
Push Multiple instruction, 5-4

Q

Quad 8-Bit Add ingtruction, 13-12

Quad 8-Bit Average — Byte instruction, 13-16

Quad 8-Bit Average — Half-Word
instruction, 13-20

Quad 8-Bit Pack instruction, 13-25

Quad 8-Bit Subtract instruction, 13-27
Quad 8-Bit Subtract-Absolute-Accumulate
instruction, 13-31

Quad 8-Bit Unpack instruction, 13-35

R

RAISE mnemonic, 11-14
register pairs

valid pairs defined, 1-3
register portions

notation convention, 1-3
register set notation

multiple Data Registersin one

instruction, 1-3

Return instruction, 2-8
RND mnemonic, 10-43
RND_MOD bit

affected instructions, 4-14, 10-21, 10-22,

10-25, 10-33

located in ASTAT register, 1-8
RND12 mnemonic, 10-45
RND20 mnemonic, 10-47
ROT...BY mnemonic, 9-16
Rotate instruction, 9-16
Round — 12 Bit instruction, 10-45
Round — 20 Bit instruction, 10-47
Round Half-Word instruction, 10-43
rounding

behavior, 1-8

biased, 1-8

convergent, 1-8

round-to-nearest, 1-7

unbiased, 1-8

Index-6

Bmatg’@

RTE mnemonic, 2-8
RTI mnemonic, 2-8
RTN mnemonic, 2-8
RTS mnemonic, 2-8
RTX mnemonic, 2-8

SAA mnemonic, 13-31
Saturate instruction, 10-49
saturation
16-hit register range, 1-7
32-bit register range, 1-7
40-bit register range, 1-7
Accumulator, 1-4
scalar operations, 14-26, 14-28
SEARCH mnemonic, 14-36
Shift with Add instruction, 9-4
Sign Bit instruction, 10-51
SIGN mnemonic, 14-2
SIGNBITS mnemonic, 10-51
SSYNC mnemonic, 11-6
stack
effects of Linkage instruction, 5-15
effects of Pop instruction, 5-6
effects of Pop Multipleinstruction, 5-10
effects of Push instruction, 5-2
effects of Push Multiple instruction, 5-4
maximum frame size, 5-14
Stack Pointer
description, 1-4
STI mnemonic, 11-12
Store Byte instruction, 3-36
Store Data Register instruction, 3-27
Store High Data Register Half instruction, 3-
30
Store Low Data Register Half instruction, 3-
33
Store Pointer Register instruction, 3-25
Subtract Immediate instruction, 10-56
Subtract instruction, 10-53
superscalar architecture, 15-2
Supervisor mode

Blackfin DSP Instruction Set Reference

Blﬂl.’l(/r@

exclusive Supervisor instructions Vector Multiply instruction, 14-26
Disable Interrupts, 11-10 Vector Negate (Two’'s Complement)
Enable Interrupts, 11-12 instruction, 14-32
Force Interrupt / Reset, 11-15 Vector Pack instruction, 14-34
Idle, 11-2 Vector Search instruction, 14-36
Return (RTI, RTX, and RTN), 2-9 VIT_MAX mnemonic, 14-5

exclusive Supervisor registers
RETE, 4-4, 5-3, 5-7 7

RETI, 4-4, 5-3, 5-7
RETN, 4-4, 5-3, 5-7
RETX, 4-4, 5-3, 5-7
SEQSTAT, 4-4, 5-3, 5-7
SYSCFG, 4-4, 5-3, 5-7
USP, 4-4,5-3, 5-7

Zero-Overhead Loop Setup instruction, 2-11

syntax

case insensitive, 1-2

comment delineators, 1-3

free format, 1-2

instruction delimiting, 1-2
System Synchronize instruction, 11-6

T

Test and Set Byte (Atomic) instruction, 11-18
TESTSET mnemonic, 11-18
truncation

behavior, 1-8

resultsin large bias, 1-8

U
UNLINK mnemonic, 5-14

Vv

Vector Absolute Value instruction, 14-10
Vector Add / Subtract instruction, 14-12
Vector Arithmetic Shift instruction, 14-16
vector couplet, 14-26, 14-28

Vector Logical Shift instruction, 14-19
Vector Maximum instruction, 14-22
Vector Minimum instruction, 14-24
Vector Multiply and Multiply-Accumul ate
instruction, 14-28

Blackfin DSP Instruction Set Reference Index-7

Bmatg’@

Index-8 Blackfin DSP Instruction Set Reference

	Introduction 1
	1.1 Manual Organization
	1.2 Syntax Conventions
	1.2.1 Case Sensitivity
	1.2.2 Free Format
	1.2.3 Instruction Delimiting
	1.2.4 Comments

	1.3 Notation Conventions
	1.4 Behavior Conventions
	1.4.1 Accumulator Saturation

	1.5 Glossary
	1.5.1 Register Names
	1.5.2 Functional Units
	1.5.3 Arithmetic Status Flags
	1.5.4 Fractional Convention
	1.5.5 Saturation
	1.5.6 Rounding and Truncating

	1.6 Related References
	1.7 Document Errata Sightings

	Program Flow Control 2
	2.1 Jump
	2.1.1 General Form
	2.1.2 Syntax
	2.1.3 Syntax Terminology
	2.1.4 Instruction Length
	2.1.5 Functional Description
	2.1.6 Flags Affected
	2.1.7 Required Mode
	2.1.8 Parallel Issue
	2.1.9 Example
	2.1.10 Also See
	2.1.11 Special Applications

	2.2 Conditional Jump
	2.2.1 General Form
	2.2.2 Syntax
	2.2.3 Syntax Terminology
	2.2.4 Instruction Length
	2.2.5 Functional Description
	2.2.6 Option
	2.2.7 Flags Affected
	2.2.8 Required Mode
	2.2.9 Parallel Issue
	2.2.10 Example
	2.2.11 Also See
	2.2.12 Special Applications

	2.3 Call
	2.3.1 General Form
	2.3.2 Syntax
	2.3.3 Syntax Terminology
	2.3.4 Instruction Length
	2.3.5 Functional Description
	2.3.6 Flags Affected
	2.3.7 Required Mode
	2.3.8 Parallel Issue
	2.3.9 Example
	2.3.10 Also See
	2.3.11 Special Applications

	2.4 Return
	2.4.1 General Form
	2.4.2 Syntax
	2.4.3 Instruction Length
	2.4.4 Functional Description
	2.4.5 Flags Affected
	2.4.6 Required Mode
	2.4.7 Parallel Issue
	2.4.8 Example
	2.4.9 Also See
	2.4.10 Special Applications

	2.5 Zero-Overhead Loop Setup
	2.5.1 General Form
	2.5.2 Syntax
	2.5.3 Syntax Terminology
	2.5.4 Instruction Length
	2.5.5 Functional Description
	2.5.6 Flags Affected
	2.5.7 Required Mode
	2.5.8 Parallel Issue
	2.5.9 Example
	2.5.10 Also See
	2.5.11 Special Applications

	Load / Store 3
	3.1 Load Immediate
	3.1.1 General Form
	3.1.2 Syntax
	3.1.3 Syntax Terminology
	3.1.4 Instruction Length
	3.1.5 Functional Description
	3.1.6 Flags Affected
	3.1.7 Required Mode
	3.1.8 Parallel Issue
	3.1.9 Example
	3.1.10 Also See
	3.1.11 Special Applications

	3.2 Load Pointer Register
	3.2.1 General Form
	3.2.2 Syntax
	3.2.3 Syntax Terminology
	3.2.4 Instruction Length
	3.2.5 Functional Description
	3.2.6 Options
	3.2.7 Flags Affected
	3.2.8 Required Mode
	3.2.9 Parallel Issue
	3.2.10 Example
	3.2.11 Also See
	3.2.12 Special Applications

	3.3 Load Data Register
	3.3.1 General Form
	3.3.2 Syntax
	3.3.3 Syntax Terminology
	3.3.4 Instruction Length
	3.3.5 Functional Description
	3.3.6 Options
	3.3.7 Indirect and Post-Increment Index Addressing
	3.3.8 Flags Affected
	3.3.9 Required Mode
	3.3.10 Parallel Issue
	3.3.11 Example
	3.3.12 Also See
	3.3.13 Special Applications

	3.4 Load Half-Word – Zero-Extended
	3.4.1 General Form
	3.4.2 Syntax
	3.4.3 Syntax Terminology
	3.4.4 Instruction Length
	3.4.5 Functional Description
	3.4.6 Options
	3.4.7 Indirect and Post-Increment Index Addressing
	3.4.8 Flags Affected
	3.4.9 Required Mode
	3.4.10 Parallel Issue
	3.4.11 Example
	3.4.12 Also See
	3.4.13 Special Applications

	3.5 Load Half-Word – Sign-Extended
	3.5.1 General Form
	3.5.2 Syntax
	3.5.3 Syntax Terminology
	3.5.4 Instruction Length
	3.5.5 Functional Description
	3.5.6 Options
	3.5.7 Indirect and Post-Increment Index Addressing
	3.5.8 Flags Affected
	3.5.9 Required Mode
	3.5.10 Parallel Issue
	3.5.11 Example
	3.5.12 Also See
	3.5.13 Special Applications

	3.6 Load High Data Register Half
	3.6.1 General Form
	3.6.2 Syntax
	3.6.3 Syntax Terminology
	3.6.4 Instruction Length
	3.6.5 Functional Description
	3.6.6 Options
	3.6.7 Indirect and Post-Increment Index Addressing
	3.6.8 Flags Affected
	3.6.9 Required Mode
	3.6.10 Parallel Issue
	3.6.11 Example
	3.6.12 Also See
	3.6.13 Special Applications

	3.7 Load Low Data Register Half
	3.7.1 General Form
	3.7.2 Syntax
	3.7.3 Syntax Terminology
	3.7.4 Instruction Length
	3.7.5 Functional Description
	3.7.6 Options
	3.7.7 Indirect and Post-Increment Index Addressing
	3.7.8 Flags Affected
	3.7.9 Required Mode
	3.7.10 Instruction Length
	3.7.11 Parallel Issue
	3.7.12 Example
	3.7.13 Also See
	3.7.14 Special Applications

	3.8 Load Byte – Zero-Extended
	3.8.1 General Form
	3.8.2 Syntax
	3.8.3 Syntax Terminology
	3.8.4 Instruction Length
	3.8.5 Functional Description
	3.8.6 Options
	3.8.7 Flags Affected
	3.8.8 Required Mode
	3.8.9 Parallel Issue
	3.8.10 Example
	3.8.11 Also See
	3.8.12 Special Applications

	3.9 Load Byte – Sign-Extended
	3.9.1 General Form
	3.9.2 Syntax
	3.9.3 Syntax Terminology
	3.9.4 Instruction Length
	3.9.5 Functional Description
	3.9.6 Options
	3.9.7 Flags Affected
	3.9.8 Required Mode
	3.9.9 Parallel Issue
	3.9.10 Example
	3.9.11 Also See
	3.9.12 Special Applications

	3.10 Store Pointer Register
	3.10.1 General Form
	3.10.2 Syntax
	3.10.3 Syntax Terminology
	3.10.4 Instruction Length
	3.10.5 Functional Description
	3.10.6 Options
	3.10.7 Flags Affected
	3.10.8 Required Mode
	3.10.9 Parallel Issue
	3.10.10 Example
	3.10.11 Also See
	3.10.12 Special Applications

	3.11 Store Data Register
	3.11.1 General Form
	3.11.2 Syntax
	3.11.3 Syntax Terminology
	3.11.4 Instruction Length
	3.11.5 Functional Description
	3.11.6 Options
	3.11.7 Indirect and Post-Increment Index Addressing
	3.11.8 Flags Affected
	3.11.9 Required Mode
	3.11.10 Parallel Issue
	3.11.11 Example
	3.11.12 Also See
	3.11.13 Special Applications

	3.12 Store High Data Register Half
	3.12.1 General Form
	3.12.2 Syntax
	3.12.3 Syntax Terminology
	3.12.4 Instruction Length
	3.12.5 Functional Description
	3.12.6 Options
	3.12.7 Indirect and Post-Increment Index Addressing
	3.12.8 Flags Affected
	3.12.9 Required Mode
	3.12.10 Parallel Issue
	3.12.11 Example
	3.12.12 Also See
	3.12.13 Special Applications

	3.13 Store Low Data Register Half
	3.13.1 General Form
	3.13.2 Syntax
	3.13.3 Syntax Terminology
	3.13.4 Instruction Length
	3.13.5 Functional Description
	3.13.6 Options
	3.13.7 Indirect and Post-Increment Index Addressing
	3.13.8 Flags Affected
	3.13.9 Required Mode
	3.13.10 Parallel Issue
	3.13.11 Example
	3.13.12 Also See
	3.13.13 Special Applications

	3.14 Store Byte
	3.14.1 General Form
	3.14.2 Syntax
	3.14.3 Syntax Terminology
	3.14.4 Instruction Length
	3.14.5 Functional Description
	3.14.6 Options
	3.14.7 Flags Affected
	3.14.8 Required Mode
	3.14.9 Parallel Issue
	3.14.10 Example
	3.14.11 Also See
	3.14.12 Special Applications

	Move 4
	4.1 Move Register
	4.1.1 General Form
	4.1.2 Syntax
	4.1.3 Syntax Terminology
	4.1.4 Instruction Length
	4.1.5 Functional Description
	4.1.6 Options
	4.1.7 Flags Affected
	4.1.8 Required Mode
	4.1.9 Parallel Issue
	4.1.10 Example
	4.1.11 Also See
	4.1.12 Special Applications

	4.2 Move Conditional
	4.2.1 General Form
	4.2.2 Syntax
	4.2.3 Syntax Terminology
	4.2.4 Instruction Length
	4.2.5 Functional Description
	4.2.6 Flags Affected
	4.2.7 Required Mode
	4.2.8 Parallel Issue
	4.2.9 Example
	4.2.10 Also See
	4.2.11 Special Applications

	4.3 Move Half-Word – Zero-Extended
	4.3.1 General Form
	4.3.2 Syntax
	4.3.3 Syntax Terminology
	4.3.4 Instruction Length
	4.3.5 Functional Description
	4.3.6 Flags Affected
	4.3.7 Required Mode
	4.3.8 Parallel Issue
	4.3.9 Example
	4.3.10 Also See
	4.3.11 Special Applications

	4.4 Move Half-Word – Sign-Extended
	4.4.1 General Form
	4.4.2 Syntax
	4.4.3 Syntax Terminology
	4.4.4 Instruction Length
	4.4.5 Functional Description
	4.4.6 Options
	4.4.7 Flags Affected
	4.4.8 Required Mode
	4.4.9 Parallel Issue
	4.4.10 Example
	4.4.11 Also See
	4.4.12 Special Applications

	4.5 Move Register Half
	4.5.1 General Form
	4.5.2 Syntax
	4.5.3 Syntax Terminology
	4.5.4 Instruction Length
	4.5.5 Functional Description
	4.5.6 Options
	4.5.7 Flags Affected
	4.5.8 Required Mode
	4.5.9 Parallel Issue
	4.5.10 Example
	4.5.11 Also See
	4.5.12 Special Applications

	4.6 Move Byte – Zero-Extended
	4.6.1 General Form
	4.6.2 Syntax
	4.6.3 Syntax Terminology
	4.6.4 Instruction Length
	4.6.5 Functional Description
	4.6.6 Flags Affected
	4.6.7 Required Mode
	4.6.8 Parallel Issue
	4.6.9 Example
	4.6.10 Also See
	4.6.11 Special Applications

	4.7 Move Byte – Sign-Extended
	4.7.1 General Form
	4.7.2 Syntax
	4.7.3 Syntax Terminology
	4.7.4 Instruction Length
	4.7.5 Functional Description
	4.7.6 Options
	4.7.7 Flags Affected
	4.7.8 Required Mode
	4.7.9 Parallel Issue
	4.7.10 Example
	4.7.11 Also See
	4.7.12 Special Applications

	Stack Control 5
	5.1 Push
	5.1.1 General Form
	5.1.2 Syntax
	5.1.3 Syntax Terminology
	5.1.4 Instruction Length
	5.1.5 Functional Description
	5.1.6 Flags Affected
	5.1.7 Required Mode
	5.1.8 Parallel Issue
	5.1.9 Example
	5.1.10 Also See
	5.1.11 Special Applications

	5.2 Push Multiple
	5.2.1 General Form
	5.2.2 Syntax
	5.2.3 Syntax Terminology
	5.2.4 Instruction Length
	5.2.5 Functional Description
	5.2.6 Flags Affected
	5.2.7 Required Mode
	5.2.8 Parallel Issue
	5.2.9 Example
	5.2.10 Also See
	5.2.11 Special Applications

	5.3 Pop
	5.3.1 General Form
	5.3.2 Syntax
	5.3.3 Syntax Terminology
	5.3.4 Instruction Length
	5.3.5 Functional Description
	5.3.6 Flags Affected
	5.3.7 Required Mode
	5.3.8 Parallel Issue
	5.3.9 Example
	5.3.10 Also See
	5.3.11 Special Applications

	5.4 Pop Multiple
	5.4.1 General Form
	5.4.2 Syntax
	5.4.3 Syntax Terminology
	5.4.4 Instruction Length
	5.4.5 Functional Description
	5.4.6 Flags Affected
	5.4.7 Required Mode
	5.4.8 Parallel Issue
	5.4.9 Example
	5.4.10 Also See
	5.4.11 Special Applications

	5.5 Linkage
	5.5.1 General Form
	5.5.2 Syntax
	5.5.3 Syntax Terminology
	5.5.4 Instruction Length
	5.5.5 Functional Description
	5.5.6 Flags Affected
	5.5.7 Required Mode
	5.5.8 Parallel Issue
	5.5.9 Example
	5.5.10 Also See
	5.5.11 Special Applications

	Control Code Bit Management 6
	6.1 Compare Data Register
	6.1.1 General Form
	6.1.2 Syntax
	6.1.3 Syntax Terminology
	6.1.4 Instruction Length
	6.1.5 Functional Description
	6.1.6 Flags Affected
	6.1.7 Required Mode
	6.1.8 Parallel Issue
	6.1.9 Example
	6.1.10 Also See
	6.1.11 Special Applications

	6.2 Compare Pointer
	6.2.1 General Form
	6.2.2 Syntax
	6.2.3 Syntax Terminology
	6.2.4 Instruction Length
	6.2.5 Functional Description
	6.2.6 Flags Affected
	6.2.7 Required Mode
	6.2.8 Parallel Issue
	6.2.9 Example
	6.2.10 Also See
	6.2.11 Special Applications

	6.3 Compare Accumulator
	6.3.1 General Form
	6.3.2 Syntax
	6.3.3 Instruction Length
	6.3.4 Functional Description
	6.3.5 Flags Affected
	6.3.6 Required Mode
	6.3.7 Parallel Issue
	6.3.8 Example
	6.3.9 Also See
	6.3.10 Special Applications

	6.4 Move CC
	6.4.1 General Form
	6.4.2 Syntax
	6.4.3 Syntax Terminology
	6.4.4 Instruction Length
	6.4.5 Functional Description
	6.4.6 Flags Affected
	6.4.7 Required Mode
	6.4.8 Instruction Length
	6.4.9 Parallel Issue
	6.4.10 Example
	6.4.11 Also See
	6.4.12 Special Applications

	6.5 Negate CC
	6.5.1 General Form
	6.5.2 Syntax
	6.5.3 Instruction Length
	6.5.4 Functional Description
	6.5.5 Flags Affected
	6.5.6 Required Mode
	6.5.7 Parallel Issue
	6.5.8 Example
	6.5.9 Also See
	6.5.10 Special Applications

	Logical Operations 7
	7.1 AND
	7.1.1 General Form
	7.1.2 Syntax
	7.1.3 Syntax Terminology
	7.1.4 Instruction Length
	7.1.5 Functional Description
	7.1.6 Flags Affected
	7.1.7 Required Mode
	7.1.8 Parallel Issue
	7.1.9 Example
	7.1.10 Also See
	7.1.11 Special Applications

	7.2 NOT (1’s Complement)
	7.2.1 General Form
	7.2.2 Syntax
	7.2.3 Syntax Terminology
	7.2.4 Instruction Length
	7.2.5 Functional Description
	7.2.6 Flags Affected
	7.2.7 Required Mode
	7.2.8 Parallel Issue
	7.2.9 Example
	7.2.10 Also See
	7.2.11 Special Applications

	7.3 OR
	7.3.1 General Form
	7.3.2 Syntax
	7.3.3 Syntax Terminology
	7.3.4 Instruction Length
	7.3.5 Functional Description
	7.3.6 Flags Affected
	7.3.7 Required Mode
	7.3.8 Parallel Issue
	7.3.9 Example
	7.3.10 Also See
	7.3.11 Special Applications

	7.4 Exclusive-OR
	7.4.1 General Form
	7.4.2 Syntax
	7.4.3 Syntax Terminology
	7.4.4 Instruction Length
	7.4.5 Functional Description
	7.4.6 Flags Affected
	7.4.7 Required Mode
	7.4.8 Parallel Issue
	7.4.9 Example
	7.4.10 Also See
	7.4.11 Special Applications

	7.5 Bit-Wise Exclusive-OR
	7.5.1 General Form
	7.5.2 Syntax
	7.5.3 Syntax Terminology
	7.5.4 Instruction Length
	7.5.5 Functional Description
	7.5.6 Flags Affected
	7.5.7 Required Mode
	7.5.8 Parallel Issue
	7.5.9 Example
	7.5.10 Also See
	7.5.11 Special Applications

	Bit Operations 8
	8.1 Bit Clear
	8.1.1 General Form
	8.1.2 Syntax
	8.1.3 Syntax Terminology
	8.1.4 Instruction Length
	8.1.5 Functional Description
	8.1.6 Flags Affected
	8.1.7 Required Mode
	8.1.8 Parallel Issue
	8.1.9 Example
	8.1.10 Also See
	8.1.11 Special Applications

	8.2 Bit Set
	8.2.1 General Form
	8.2.2 Syntax
	8.2.3 Syntax Terminology
	8.2.4 Instruction Length
	8.2.5 Functional Description
	8.2.6 Flags Affected
	8.2.7 Required Mode
	8.2.8 Parallel Issue
	8.2.9 Example
	8.2.10 Also See
	8.2.11 Special Applications

	8.3 Bit Toggle
	8.3.1 General Form
	8.3.2 Syntax
	8.3.3 Syntax Terminology
	8.3.4 Instruction Length
	8.3.5 Functional Description
	8.3.6 Flags Affected
	8.3.7 Required Mode
	8.3.8 Parallel Issue
	8.3.9 Example
	8.3.10 Also See
	8.3.11 Special Applications

	8.4 Bit Test
	8.4.1 General Form
	8.4.2 Syntax
	8.4.3 Syntax Terminology
	8.4.4 Instruction Length
	8.4.5 Functional Description
	8.4.6 Flags Affected
	8.4.7 Required Mode
	8.4.8 Parallel Issue
	8.4.9 Example
	8.4.10 Also See
	8.4.11 Special Applications

	8.5 Bit Field Deposit
	8.5.1 General Form
	8.5.2 Syntax
	8.5.3 Syntax Terminology
	8.5.4 Instruction Length
	8.5.5 Functional Description
	8.5.6 Flags Affected
	8.5.7 Required Mode
	8.5.8 Parallel Issue
	8.5.9 Example
	8.5.10 Also See
	8.5.11 Special Applications

	8.6 Bit Field Extraction
	8.6.1 General Form
	8.6.2 Syntax
	8.6.3 Syntax Terminology
	8.6.4 Instruction Length
	8.6.5 Functional Description
	8.6.6 Flags Affected
	8.6.7 Required Mode
	8.6.8 Parallel Issue
	8.6.9 Example
	8.6.10 Also See
	8.6.11 Special Applications

	8.7 Bit Multiplex
	8.7.1 General Form
	8.7.2 Syntax
	8.7.3 Syntax Terminology
	8.7.4 Instruction Length
	8.7.5 Functional Description
	8.7.6 Flags Affected
	8.7.7 Required Mode
	8.7.8 Parallel Issue
	8.7.9 Example
	8.7.10 Also See
	8.7.11 Special Applications

	8.8 Ones Population Count
	8.8.1 General Form
	8.8.2 Syntax
	8.8.3 Syntax Terminology
	8.8.4 Instruction Length
	8.8.5 Functional Description
	8.8.6 Flags Affected
	8.8.7 Required Mode
	8.8.8 Parallel Issue
	8.8.9 Example
	8.8.10 Also See
	8.8.11 Special Applications

	Shift / Rotate Operations 9
	9.1 Add with Shift
	9.1.1 General Form
	9.1.2 Syntax
	9.1.3 Syntax Terminology
	9.1.4 Instruction Length
	9.1.5 Functional Description
	9.1.6 Flags Affected
	9.1.7 Required Mode
	9.1.8 Parallel Issue
	9.1.9 Example
	9.1.10 Also See
	9.1.11 Special Applications

	9.2 Shift with Add
	9.2.1 General Form
	9.2.2 Syntax
	9.2.3 Syntax Terminology
	9.2.4 Instruction Length
	9.2.5 Functional Description
	9.2.6 Flags Affected
	9.2.7 Required Mode
	9.2.8 Parallel Issue
	9.2.9 Example
	9.2.10 Also See
	9.2.11 Special Applications

	9.3 Arithmetic Shift
	9.3.1 General Form
	9.3.2 Syntax
	9.3.3 Syntax Terminology
	9.3.4 Instruction Length
	9.3.5 Functional Description
	9.3.6 Options
	9.3.7 Flags Affected
	9.3.8 Required Mode
	9.3.9 Parallel Issue
	9.3.10 Example
	9.3.11 Also See
	9.3.12 Special Applications

	9.4 Logical Shift
	9.4.1 General Form
	9.4.2 Syntax
	9.4.3 Syntax Terminology
	9.4.4 Instruction Length
	9.4.5 Functional Description
	9.4.6 Flags Affected
	9.4.7 Required Mode
	9.4.8 Parallel Issue
	9.4.9 Example
	9.4.10 Also See
	9.4.11 Special Applications

	9.5 Rotate
	9.5.1 General Form
	9.5.2 Syntax
	9.5.3 Syntax Terminology
	9.5.4 Instruction Length
	9.5.5 Functional Description
	9.5.6 Flags Affected
	9.5.7 Required Mode
	9.5.8 Parallel Issue
	9.5.9 Example
	9.5.10 Also See
	9.5.11 Special Applications

	Arithmetic Operations 10
	10.1 Absolute Value
	10.1.1 General Form
	10.1.2 Syntax
	10.1.3 Syntax Terminology
	10.1.4 Instruction Length
	10.1.5 Functional Description
	10.1.6 Flags Affected
	10.1.7 Required Mode
	10.1.8 Parallel Issue
	10.1.9 Example
	10.1.10 Also See
	10.1.11 Special Applications

	10.2 Add
	10.2.1 General Form
	10.2.2 Syntax
	10.2.3 Syntax Terminology
	10.2.4 Instruction Length
	10.2.5 Functional Description
	10.2.6 Flags Affected
	10.2.7 Required Mode
	10.2.8 Parallel Issue
	10.2.9 Example
	10.2.10 Also See
	10.2.11 Special Applications

	10.3 Add Immediate
	10.3.1 General Form
	10.3.2 Syntax
	10.3.3 Syntax Terminology
	10.3.4 Instruction Length
	10.3.5 Functional Description
	10.3.6 Flags Affected
	10.3.7 Required Mode
	10.3.8 Parallel Issue
	10.3.9 Example
	10.3.10 Also See
	10.3.11 Special Applications

	10.4 Divide Primitive
	10.4.1 General Form
	10.4.2 Syntax
	10.4.3 Syntax Terminology
	10.4.4 Instruction Length
	10.4.5 Functional Description
	10.4.6 Flags Affected
	10.4.7 Required Mode
	10.4.8 Parallel Issue
	10.4.9 Example
	10.4.10 Also See
	10.4.11 Special Applications

	10.5 Exponent Detection
	10.5.1 General Form
	10.5.2 Syntax
	10.5.3 Syntax Terminology
	10.5.4 Instruction Length
	10.5.5 Functional Description
	10.5.6 Flags Affected
	10.5.7 Required Mode
	10.5.8 Parallel Issue
	10.5.9 Example
	10.5.10 Also See
	10.5.11 Special Applications

	10.6 Maximum
	10.6.1 General Form
	10.6.2 Syntax
	10.6.3 Syntax Terminology
	10.6.4 Instruction Length
	10.6.5 Functional Description
	10.6.6 Flags Affected
	10.6.7 Required Mode
	10.6.8 Parallel Issue
	10.6.9 Example
	10.6.10 Also See
	10.6.11 Special Applications

	10.7 Minimum
	10.7.1 General Form
	10.7.2 Syntax
	10.7.3 Syntax Terminology
	10.7.4 Instruction Length
	10.7.5 Functional Description
	10.7.6 Flags Affected
	10.7.7 Required Mode
	10.7.8 Parallel Issue
	10.7.9 Example
	10.7.10 Also See
	10.7.11 Special Applications

	10.8 Modify – Decrement
	10.8.1 General Form
	10.8.2 Syntax
	10.8.3 Syntax Terminology
	10.8.4 Instruction Length
	10.8.5 Functional Description
	10.8.6 Flags Affected
	10.8.7 Required Mode
	10.8.8 Parallel Issue
	10.8.9 Example
	10.8.10 Also See
	10.8.11 Special Applications

	10.9 Modify – Increment
	10.9.1 General Form
	10.9.2 Syntax
	10.9.3 Syntax Terminology
	10.9.4 Instruction Length
	10.9.5 Functional Description
	10.9.6 Option
	10.9.7 Flags Affected
	10.9.8 Required Mode
	10.9.9 Parallel Issue
	10.9.10 Example
	10.9.11 Also See
	10.9.12 Special Applications

	10.10 Multiply
	10.10.1 General Form
	10.10.2 Syntax
	10.10.3 Syntax Terminology
	10.10.4 Instruction Length
	10.10.5 Functional Description
	10.10.6 Options
	10.10.7 Flags Affected
	10.10.8 Required Mode
	10.10.9 Parallel Issue
	10.10.10 Example
	10.10.11 Also See
	10.10.12 Special Applications

	10.11 Multiply and Multiply-Accumulate to Accumulator
	10.11.1 General Form
	10.11.2 Syntax
	10.11.3 Syntax Terminology
	10.11.4 Instruction Length
	10.11.5 Functional Description
	10.11.6 Options
	10.11.7 Flags Affected
	10.11.8 Required Mode
	10.11.9 Parallel Issue
	10.11.10 Example
	10.11.11 Also See
	10.11.12 Special Applications

	10.12 Multiply and Multiply-Accumulate to Half-Register
	10.12.1 General Form
	10.12.2 Syntax
	10.12.3 Syntax Terminology
	10.12.4 Instruction Length
	10.12.5 Functional Description
	10.12.6 Options
	10.12.7 Flags Affected
	10.12.8 Required Mode
	10.12.9 Parallel Issue
	10.12.10 Example
	10.12.11 Also See
	10.12.12 Special Applications

	10.13 Multiply and Multiply-Accumulate to Data Register
	10.13.1 General Form
	10.13.2 Syntax
	10.13.3 Syntax Terminology
	10.13.4 Instruction Length
	10.13.5 Functional Description
	10.13.6 Options
	10.13.7 Flags Affected
	10.13.8 Required Mode
	10.13.9 Parallel Issue
	10.13.10 Example
	10.13.11 Also See
	10.13.12 Special Applications

	10.14 Multiply (Modulo 232)
	10.14.1 General Form
	10.14.2 Syntax
	10.14.3 Syntax Terminology
	10.14.4 Instruction Length
	10.14.5 Functional Description
	10.14.6 Flags Affected
	10.14.7 Required Mode
	10.14.8 Parallel Issue
	10.14.9 Example
	10.14.10 Also See
	10.14.11 Special Applications

	10.15 Negate (Two’s Complement)
	10.15.1 General Form
	10.15.2 Syntax
	10.15.3 Syntax Terminology
	10.15.4 Instruction Length
	10.15.5 Functional Description
	10.15.6 Flags Affected
	10.15.7 Required Mode
	10.15.8 Parallel Issue
	10.15.9 Example
	10.15.10 Also See
	10.15.11 Special Applications

	10.16 Round Half-Word
	10.16.1 General Form
	10.16.2 Syntax
	10.16.3 Syntax Terminology
	10.16.4 Instruction Length
	10.16.5 Functional Description
	10.16.6 Flags Affected
	10.16.7 Required Mode
	10.16.8 Parallel Issue
	10.16.9 Example
	10.16.10 Also See
	10.16.11 Special Applications

	10.17 Round – 12 Bit
	10.17.1 General Form
	10.17.2 Syntax
	10.17.3 Syntax Terminology
	10.17.4 Instruction Length
	10.17.5 Functional Description
	10.17.6 Flags Affected
	10.17.7 Required Mode
	10.17.8 Parallel Issue
	10.17.9 Example
	10.17.10 Also See
	10.17.11 Special Applications

	10.18 Round – 20 Bit
	10.18.1 General Form
	10.18.2 Syntax
	10.18.3 Syntax Terminology
	10.18.4 Instruction Length
	10.18.5 Functional Description
	10.18.6 Flags Affected
	10.18.7 Required Mode
	10.18.8 Parallel Issue
	10.18.9 Example
	10.18.10 Also See
	10.18.11 Special Applications

	10.19 Saturate
	10.19.1 General Form
	10.19.2 Syntax
	10.19.3 Syntax Terminology
	10.19.4 Instruction Length
	10.19.5 Functional Description
	10.19.6 Flags Affected
	10.19.7 Required Mode
	10.19.8 Parallel Issue
	10.19.9 Example
	10.19.10 Also See
	10.19.11 Special Applications

	10.20 Sign Bit
	10.20.1 General Form
	10.20.2 Syntax
	10.20.3 Syntax Terminology
	10.20.4 Instruction Length
	10.20.5 Functional Description
	10.20.6 Flags Affected
	10.20.7 Required Mode
	10.20.8 Parallel Issue
	10.20.9 Example
	10.20.10 Also See
	10.20.11 Special Applications

	10.21 Subtract
	10.21.1 General Form
	10.21.2 Syntax
	10.21.3 Syntax Terminology
	10.21.4 Instruction Length
	10.21.5 Functional Description
	10.21.6 Flags Affected
	10.21.7 Required Mode
	10.21.8 Parallel Issue
	10.21.9 Example
	10.21.10 Also See
	10.21.11 Special Applications

	10.22 Subtract Immediate
	10.22.1 General Form
	10.22.2 Syntax
	10.22.3 Syntax Terminology
	10.22.4 Instruction Length
	10.22.5 Functional Description
	10.22.6 Flags Affected
	10.22.7 Required Mode
	10.22.8 Parallel Issue
	10.22.9 Example
	10.22.10 Also See
	10.22.11 Special Applications

	External Event Management 11
	11.1 Idle
	11.1.1 General Form
	11.1.2 Syntax
	11.1.3 Instruction Length
	11.1.4 Functional Description
	11.1.5 Flags Affected
	11.1.6 Required Mode
	11.1.7 Parallel Issue
	11.1.8 Example
	11.1.9 Also See
	11.1.10 Special Applications

	11.2 Core Synchronize
	11.2.1 General Form
	11.2.2 Syntax
	11.2.3 Instruction Length
	11.2.4 Functional Description
	11.2.5 Flags Affected
	11.2.6 Required Mode
	11.2.7 Parallel Issue
	11.2.8 Example
	11.2.9 Also See
	11.2.10 Special Applications

	11.3 System Synchronize
	11.3.1 General Form
	11.3.2 Syntax
	11.3.3 Instruction Length
	11.3.4 Functional Description
	11.3.5 Flags Affected
	11.3.6 Required Mode
	11.3.7 Parallel Issue
	11.3.8 Example
	11.3.9 Also See
	11.3.10 Special Applications

	11.4 Force Emulation
	11.4.1 General Form
	11.4.2 Syntax
	11.4.3 Instruction Length
	11.4.4 Functional Description
	11.4.5 Flags Affected
	11.4.6 Required Mode
	11.4.7 Parallel Issue
	11.4.8 Example
	11.4.9 Also See
	11.4.10 Special Applications

	11.5 Disable Interrupts
	11.5.1 General Form
	11.5.2 Syntax
	11.5.3 Syntax Terminology
	11.5.4 Instruction Length
	11.5.5 Functional Description
	11.5.6 Flags Affected
	11.5.7 Required Mode
	11.5.8 Parallel Issue
	11.5.9 Example
	11.5.10 Also See
	11.5.11 Special Applications

	11.6 Enable Interrupts
	11.6.1 General Form
	11.6.2 Syntax
	11.6.3 Syntax Terminology
	11.6.4 Instruction Length
	11.6.5 Functional Description
	11.6.6 Flags Affected
	11.6.7 Required Mode
	11.6.8 Parallel Issue
	11.6.9 Example
	11.6.10 Also See
	11.6.11 Special Applications

	11.7 Force Interrupt / Reset
	11.7.1 General Form
	11.7.2 Syntax
	11.7.3 Syntax Terminology
	11.7.4 Instruction Length
	11.7.5 Functional Description
	11.7.6 Flags Affected
	11.7.7 Required Mode
	11.7.8 Parallel Issue
	11.7.9 Example
	11.7.10 Also See
	11.7.11 Special Applications

	11.8 Force Exception
	11.8.1 General Form
	11.8.2 Syntax
	11.8.3 Syntax Terminology
	11.8.4 Instruction Length
	11.8.5 Functional Description
	11.8.6 Flags Affected
	11.8.7 Required Mode
	11.8.8 Parallel Issue
	11.8.9 Example
	11.8.10 Also See
	11.8.11 Special Applications

	11.9 Test and Set Byte (Atomic)
	11.9.1 General Form
	11.9.2 Syntax
	11.9.3 Syntax Terminology
	11.9.4 Instruction Length
	11.9.5 Functional Description
	11.9.6 Flags Affected
	11.9.7 Required Mode
	11.9.8 Parallel Issue
	11.9.9 Example
	11.9.10 Also See
	11.9.11 Special Applications

	11.10 No Op
	11.10.1 General Form
	11.10.2 Syntax
	11.10.3 Instruction Length
	11.10.4 Functional Description
	11.10.5 Flags Affected
	11.10.6 Required Mode
	11.10.7 Parallel Issue
	11.10.8 Example
	11.10.9 Also See
	11.10.10 Special Applications

	Cache Control 12
	12.1 Data Cache Prefetch
	12.1.1 General Form
	12.1.2 Syntax
	12.1.3 Syntax Terminology
	12.1.4 Instruction Length
	12.1.5 Functional Description
	12.1.6 Flags Affected
	12.1.7 Required Mode
	12.1.8 Parallel Issue
	12.1.9 Example
	12.1.10 Also See
	12.1.11 Special Applications

	12.2 Data Cache Flush
	12.2.1 General Form
	12.2.2 Syntax
	12.2.3 Syntax Terminology
	12.2.4 Instruction Length
	12.2.5 Functional Description
	12.2.6 Flags Affected
	12.2.7 Required Mode
	12.2.8 Parallel Issue
	12.2.9 Example
	12.2.10 Also See
	12.2.11 Special Applications

	12.3 Data Cache Line Invalidate
	12.3.1 General Form
	12.3.2 Syntax
	12.3.3 Syntax Terminology
	12.3.4 Instruction Length
	12.3.5 Functional Description
	12.3.6 Flags Affected
	12.3.7 Required Mode
	12.3.8 Parallel Issue
	12.3.9 Example
	12.3.10 Also See
	12.3.11 Special Applications

	12.4 Instruction Cache Flush
	12.4.1 General Form
	12.4.2 Syntax
	12.4.3 Syntax Terminology
	12.4.4 Instruction Length
	12.4.5 Functional Description
	12.4.6 Flags Affected
	12.4.7 Required Mode
	12.4.8 Parallel Issue
	12.4.9 Example
	12.4.10 Also See
	12.4.11 Special Applications

	Video Pixel Operations 13
	13.1 Byte Align
	13.1.1 General Form
	13.1.2 Syntax
	13.1.3 Syntax Terminology
	13.1.4 Instruction Length
	13.1.5 Functional Description
	13.1.6 Flags Affected
	13.1.7 Required Mode
	13.1.8 Parallel Issue
	13.1.9 Example
	13.1.10 Also See
	13.1.11 Special Applications

	13.2 Disable Alignment Exception for Load
	13.2.1 General Form
	13.2.2 Syntax
	13.2.3 Syntax Terminology
	13.2.4 Instruction Length
	13.2.5 Functional Description
	13.2.6 Flags Affected
	13.2.7 Required Mode
	13.2.8 Parallel Issue
	13.2.9 Example
	13.2.10 Also See
	13.2.11 Special Applications

	13.3 Dual 16-Bit Add / Clip
	13.3.1 General Form
	13.3.2 Syntax
	13.3.3 Syntax Terminology
	13.3.4 Instruction Length
	13.3.5 Functional Description
	13.3.6 Options
	13.3.7 Flags Affected
	13.3.8 Required Mode
	13.3.9 Parallel Issue
	13.3.10 Example
	13.3.11 Also See
	13.3.12 Special Applications

	13.4 Dual 16-Bit Accumulator Extraction with Addition
	13.4.1 General Form
	13.4.2 Syntax
	13.4.3 Syntax Terminology
	13.4.4 Instruction Length
	13.4.5 Functional Description
	13.4.6 Flags Affected
	13.4.7 Required Mode
	13.4.8 Parallel Issue
	13.4.9 Example
	13.4.10 Also See
	13.4.11 Special Applications

	13.5 Quad 8-Bit Add
	13.5.1 General Form
	13.5.2 Syntax
	13.5.3 Syntax Terminology
	13.5.4 Instruction Length
	13.5.5 Functional Description
	13.5.6 Options
	13.5.7 Flags Affected
	13.5.8 Required Mode
	13.5.9 Parallel Issue
	13.5.10 Example
	13.5.11 Also See
	13.5.12 Special Applications

	13.6 Quad 8-Bit Average – Byte
	13.6.1 General Form
	13.6.2 Syntax
	13.6.3 Syntax Terminology
	13.6.4 Instruction Length
	13.6.5 Functional Description
	13.6.6 Options
	13.6.7 Flags Affected
	13.6.8 Required Mode
	13.6.9 Parallel Issue
	13.6.10 Example
	13.6.11 Also See
	13.6.12 Special Applications

	13.7 Quad 8-Bit Average – Half-Word
	13.7.1 General Form
	13.7.2 Syntax
	13.7.3 Syntax Terminology
	13.7.4 Instruction Length
	13.7.5 Functional Description
	13.7.6 Options
	13.7.7 Flags Affected
	13.7.8 Required Mode
	13.7.9 Parallel Issue
	13.7.10 Example
	13.7.11 Also See
	13.7.12 Special Applications

	13.8 Quad 8-Bit Pack
	13.8.1 General Form
	13.8.2 Syntax
	13.8.3 Syntax Terminology
	13.8.4 Instruction Length
	13.8.5 Functional Description
	13.8.6 Flags Affected
	13.8.7 Required Mode
	13.8.8 Parallel Issue
	13.8.9 Example
	13.8.10 Also See
	13.8.11 Special Applications

	13.9 Quad 8-Bit Subtract
	13.9.1 General Form
	13.9.2 Syntax
	13.9.3 Syntax Terminology
	13.9.4 Instruction Length
	13.9.5 Functional Description
	13.9.6 Options
	13.9.7 Flags Affected
	13.9.8 Required Mode
	13.9.9 Parallel Issue
	13.9.10 Example
	13.9.11 Also See
	13.9.12 Special Applications

	13.10 Quad 8-Bit Subtract-Absolute-Accumulate
	13.10.1 General Form
	13.10.2 Syntax
	13.10.3 Syntax Terminology
	13.10.4 Instruction Length
	13.10.5 Functional Description
	13.10.6 Options
	13.10.7 Flags Affected
	13.10.8 Required Mode
	13.10.9 Parallel Issue
	13.10.10 Example
	13.10.11 Also See
	13.10.12 Special Applications

	13.11 Quad 8-Bit Unpack
	13.11.1 General Form
	13.11.2 Syntax
	13.11.3 Syntax Terminology
	13.11.4 Instruction Length
	13.11.5 Functional Description
	13.11.6 Options
	13.11.7 Flags Affected
	13.11.8 Required Mode
	13.11.9 Parallel Issue
	13.11.10 Example
	13.11.11 Also See
	13.11.12 Special Applications

	Vector Operations 14
	14.1 Add on Sign
	14.1.1 General Form
	14.1.2 Syntax
	14.1.3 Syntax Terminology
	14.1.4 Instruction Length
	14.1.5 Functional Description
	14.1.6 Flags Affected
	14.1.7 Required Mode
	14.1.8 Parallel Issue
	14.1.9 Example
	14.1.10 Also See
	14.1.11 Special Applications

	14.2 Compare-Select (VIT_MAX)
	14.2.1 General Form
	14.2.2 Syntax
	14.2.3 Syntax Terminology
	14.2.4 Instruction Length
	14.2.5 Functional Description
	14.2.6 Flags Affected
	14.2.7 Required Mode
	14.2.8 Parallel Issue
	14.2.9 Example
	14.2.10 Also See
	14.2.11 Special Applications

	14.3 Vector Absolute Value
	14.3.1 General Form
	14.3.2 Syntax
	14.3.3 Syntax Terminology
	14.3.4 Instruction Length
	14.3.5 Functional Description
	14.3.6 Flags Affected
	14.3.7 Required Mode
	14.3.8 Parallel Issue
	14.3.9 Example
	14.3.10 Also See
	14.3.11 Special Applications

	14.4 Vector Add / Subtract
	14.4.1 General Form
	14.4.2 Syntax
	14.4.3 Syntax Terminology
	14.4.4 Instruction Length
	14.4.5 Functional Description
	14.4.6 Options
	14.4.7 Flags Affected
	14.4.8 Required Mode
	14.4.9 Parallel Issue
	14.4.10 Example
	14.4.11 Also See
	14.4.12 Special Applications

	14.5 Vector Arithmetic Shift
	14.5.1 General Form
	14.5.2 Syntax
	14.5.3 Syntax Terminology
	14.5.4 Instruction Length
	14.5.5 Functional Description
	14.5.6 Option
	14.5.7 Flags Affected
	14.5.8 Required Mode
	14.5.9 Parallel Issue
	14.5.10 Example
	14.5.11 Also See
	14.5.12 Special Applications

	14.6 Vector Logical Shift
	14.6.1 General Form
	14.6.2 Syntax
	14.6.3 Syntax Terminology
	14.6.4 Instruction Length
	14.6.5 Functional Description
	14.6.6 Flags Affected
	14.6.7 Required Mode
	14.6.8 Parallel Issue
	14.6.9 Example
	14.6.10 Also See
	14.6.11 Special Applications

	14.7 Vector Maximum
	14.7.1 General Form
	14.7.2 Syntax
	14.7.3 Syntax Terminology
	14.7.4 Instruction Length
	14.7.5 Functional Description
	14.7.6 Flags Affected
	14.7.7 Required Mode
	14.7.8 Parallel Issue
	14.7.9 Example
	14.7.10 Also See
	14.7.11 Special Applications

	14.8 Vector Minimum
	14.8.1 General Form
	14.8.2 Syntax
	14.8.3 Syntax Terminology
	14.8.4 Instruction Length
	14.8.5 Functional Description
	14.8.6 Flags Affected
	14.8.7 Required Mode
	14.8.8 Parallel Issue
	14.8.9 Example
	14.8.10 Also See
	14.8.11 Special Applications

	14.9 Vector Multiply
	14.9.1 Simultaneous Issue and Execution
	14.9.2 Syntax
	14.9.3 Instruction Length
	14.9.4 Flags Affected
	14.9.5 Example

	14.10 Vector Multiply and Multiply-Accumulate
	14.10.1 Simultaneous Issue and Execution
	14.10.2 Syntax
	14.10.3 Instruction Length
	14.10.4 Flags Affected
	14.10.5 Example

	14.11 Vector Negate (Two’s Complement)
	14.11.1 General Form
	14.11.2 Syntax
	14.11.3 Syntax Terminology
	14.11.4 Instruction Length
	14.11.5 Functional Description
	14.11.6 Flags Affected
	14.11.7 Required Mode
	14.11.8 Parallel Issue
	14.11.9 Example
	14.11.10 Also See
	14.11.11 Special Applications

	14.12 Vector Pack
	14.12.1 General Form
	14.12.2 Syntax
	14.12.3 Syntax Terminology
	14.12.4 Instruction Length
	14.12.5 Functional Description
	14.12.6 Flags Affected
	14.12.7 Required Mode
	14.12.8 Parallel Issue
	14.12.9 Example
	14.12.10 Also See
	14.12.11 Special Applications

	14.13 Vector Search
	14.13.1 General Form
	14.13.2 Syntax
	14.13.3 Syntax Terminology
	14.13.4 Instruction Length
	14.13.5 Functional Description
	14.13.6 Modes
	14.13.7 Flags Affected
	14.13.8 Required Mode
	14.13.9 Parallel Issue
	14.13.10 Example
	14.13.11 Also See
	14.13.12 Special Applications

	Issuing Parallel Instructions 15
	15.1 Summary
	15.2 Supported Parallel Combinations
	15.3 Parallel Issue Syntax
	15.4 32-Bit ALU/MAC Instructions
	15.5 16-Bit Instructions
	15.6 Examples
	15.6.1 Two Parallel Memory Access Instructions
	15.6.2 One Ireg and One Memory Access Instruction in Parallel
	15.6.3 One Ireg Instruction in Parallel

	Index

